Skip to main content
Log in

Constructing Semi-Empirical Sunspot Models for Helioseismology

  • Helioseismology
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

One goal of helioseismology is to determine the subsurface structure of sunspots. In order to do so, it is important to understand first the near-surface effects of sunspots on solar waves, which are dominant. Here we construct simplified, cylindrically-symmetric sunspot models that are designed to capture the magnetic and thermodynamics effects coming from about 500 km below the quiet-Sun τ 5000=1 level to the lower chromosphere. We use a combination of existing semi-empirical models of sunspot thermodynamic structure (density, temperature, pressure): the umbral model of Maltby et al. (1986, Astrophys. J. 306, 284) and the penumbral model of Ding and Fang (1989, Astron. Astrophys. 225, 204). The OPAL equation-of-state tables are used to derive the sound-speed profile. We smoothly merge the near-surface properties to the quiet-Sun values about 1 Mm below the surface. The umbral and penumbral radii are free parameters. The magnetic field is added to the thermodynamic structure, without requiring magnetostatic equilibrium. The vertical component of the magnetic field is assumed to have a Gaussian horizontal profile, with a maximum surface field strength fixed by surface observations. The full magnetic-field vector is solenoidal and determined by the on-axis vertical field, which, at the surface, is chosen such that the field inclination is 45° at the umbral – penumbral boundary. We construct a particular sunspot model based on SOHO/MDI observations of the sunspot in active region NOAA 9787. The helioseismic signature of the model sunspot is studied using numerical simulations of the propagation of f, p 1, and p 2 wave packets. These simulations are compared against cross-covariances of the observed wave field. We find that the sunspot model gives a helioseismic signature that is similar to the observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Beckers, J.M., Milkey, R.W.: 1975, The line response function of stellar atmospheres and the effective depth of line formation. Solar Phys. 43, 289 – 292. doi: 10.1007/BF00152353 .

    Article  ADS  Google Scholar 

  • Birch, A.C., Braun, D.C., Hanasoge, S.M., Cameron, R.: 2009, Surface-focused seismic holography of sunspots: II. Expectations from numerical simulations using sound-speed perturbations. Solar Phys. 254, 17 – 27. doi: 10.1007/s11207-008-9282-9 .

    Article  ADS  Google Scholar 

  • Braun, D.C.: 1995, Scattering of p-modes by sunspots. I. Observations. Astrophys. J. 451, 859. doi: 10.1086/176272 .

    Article  ADS  Google Scholar 

  • Braun, D.C., Birch, A.C.: 2006, Observed frequency variations of solar p-mode travel times as evidence for surface effects in sunspot seismology. Astrophys. J. Lett. 647, L187 – L190. doi: 10.1086/507450 .

    Article  ADS  Google Scholar 

  • Braun, D.C., Birch, A.C.: 2008, Surface-focused seismic holography of sunspots: I. Observations. Solar Phys. 251, 267 – 289. doi: 10.1007/s11207-008-9152-5 .

    Article  ADS  Google Scholar 

  • Cameron, R., Gizon, L., Daiffallah, K.: 2007, SLiM: A code for the simulation of wave propagation through an inhomogeneous, magnetised solar atmosphere. Astron. Nachr. 328, 313. doi: 10.1002/asna.200610736 .

    Article  MATH  ADS  Google Scholar 

  • Cameron, R., Gizon, L., Duvall, T.L. Jr.: 2008, Helioseismology of sunspots: Confronting observations with three-dimensional MHD simulations of wave propagation. Solar Phys. 251, 291 – 308.

    Article  ADS  Google Scholar 

  • Christensen-Dalsgaard, J., Dappen, W., Ajukov, S.V., Anderson, E.R., Antia, H.M., Basu, S., Baturin, V.A., Berthomieu, G., Chaboyer, B., Chitre, S.M., Cox, A.N., Demarque, P., Donatowicz, J., Dziembowski, W.A., Gabriel, M., Gough, D.O., Guenther, D.B., Guzik, J.A., Harvey, J.W., Hill, F., Houdek, G., Iglesias, C.A., Kosovichev, A.G., Leibacher, J.W., Morel, P., Proffitt, C.R., Provost, J., Reiter, J., Rhodes, E.J., Jr., Rogers, F.J., Roxburgh, I.W., Thompson, M.J., Ulrich, R.K.: 1996, The current state of solar modeling. Science 272, 1286. doi: 10.1126/science.272.5266.1286 .

    Article  ADS  Google Scholar 

  • Courant, R., Friedrichs, K., Lewy, H.: 1928, Über die partiellen Differenzengleicungen der mathematischen Physik. Math. Ann. 100, 32 – 74.

    Article  MATH  MathSciNet  Google Scholar 

  • Ding, M.D., Fang, C.: 1989, A semi-empirical model of sunspot penumbra. Astron. Astrophys. 225, 204 – 212.

    ADS  Google Scholar 

  • Duvall, T.L. Jr., Birch, A.C., Gizon, L.: 2006, Direct measurement of travel-time kernels for helioseismology. Astrophys. J. 646, 553 – 559. doi: 10.1086/504792 .

    Article  ADS  Google Scholar 

  • Gizon, L., Hanasoge, S.M., Birch, A.C.: 2006, Scattering of acoustic waves by a magnetic cylinder: accuracy of the born approximation. Astrophys. J. 643, 549 – 555. doi: 10.1086/502623 .

    Article  ADS  Google Scholar 

  • Gizon, L., Birch, A.C., Spruit, H.C.: (2010), Local helioseismology: Three dimensional imaging of the solar interior. Ann. Rev. Astron. Astrophys. 48, 289 – 338.

    Article  ADS  Google Scholar 

  • Gizon, L., Schunker, H., Baldner, C.S., Basu, S., Birch, A.C., Bogart, R.S., Braun, D.C., Cameron, R., Duvall, T.L., Hanasoge, S.M., Jackiewicz, J., Roth, M., Stahn, T., Thompson, M.J., Zharkov, S.: 2009, Helioseismology of sunspots: A case study of NOAA region 9787. Space Sci. Rev. 144, 249 – 273. doi: 10.1007/s11214-008-9466-5 .

    Article  ADS  Google Scholar 

  • Hanasoge, S.M.: 2008, Seismic halos around active regions: A magnetohydrodynamic theory. Astrophys. J. 680, 1457 – 1466. doi: 10.1086/587934 .

    Article  ADS  Google Scholar 

  • Khomenko, E., Collados, M.: 2008, Magnetohydrostatic sunspot models from deep subphotospheric to chromospheric layers. Astrophys. J. 689, 1379 – 1387. doi: 10.1086/592681 .

    Article  ADS  Google Scholar 

  • Khomenko, E., Collados, M., Felipe, T.: 2008, Nonlinear numerical simulations of magneto-acoustic wave propagation in small-scale flux tubes. Solar Phys. 251, 589 – 611. doi: 10.1007/s11207-008-9133-8 .

    Article  ADS  Google Scholar 

  • Maltby, P., Avrett, E.H., Carlsson, M., Kjeldseth-Moe, O., Kurucz, R.L., Loeser, R.: 1986, A new sunspot umbral model and its variation with the solar cycle. Astrophys. J. 306, 284 – 303. doi: 10.1086/164342 .

    Article  ADS  Google Scholar 

  • Mathew, S.K., Lagg, A., Solanki, S.K., Collados, M., Borrero, J.M., Berdyugina, S., Krupp, N., Woch, J., Frutiger, C.: 2003, Three dimensional structure of a regular sunspot from the inversion of IR Stokes profiles. Astron. Astrophys. 410, 695 – 710. doi: 10.1051/0004-6361:20031282 .

    Article  ADS  Google Scholar 

  • Mathew, S.K., Solanki, S.K., Lagg, A., Collados, M., Borrero, J.M., Berdyugina, S.: 2004, Thermal-magnetic relation in a sunspot and a map of its Wilson depression. Astron. Astrophys. 422, 693 – 701. doi: 10.1051/0004-6361:20040136 .

    Article  ADS  Google Scholar 

  • Moradi, H., Cally, P.S.: 2008, Time – distance modelling in a simulated sunspot atmosphere. Solar Phys. 251, 309 – 327. doi: 10.1007/s11207-008-9190-z .

    Article  ADS  Google Scholar 

  • Moradi, H., Hanasoge, S.M., Cally, P.S.: 2009, Numerical models of travel-time inhomogeneities in sunspots. Astrophys. J. Lett. 690, L72 – L75. doi: 10.1088/0004-637X/690/1/L72 .

    Article  ADS  Google Scholar 

  • Moradi, H., Baldner, C., Birch, A., Braun, D., Cameron, R., Duvall, T. Jr., Gizon, L., Haber, D., Hanasoge, S., Jackiewicz, J., Khomenko, E., Komm, R., Rajaguru, R., Rempel, M., Roth, M., Schlichenmaier, R., Schunker, H., Spruit, H., Strassmeier, K., Thompson, M., Zharkov, S.: 2010, Modeling the subsurface structure of sunspots. Solar Phys., accepted.

  • Parchevsky, K.V., Kosovichev, A.G.: 2009, Numerical simulation of excitation and propagation of helioseismic MHD waves: Effects of inclined magnetic field. Astrophys. J. 694, 573 – 581. doi: 10.1088/0004-637X/694/1/573 .

    Article  ADS  Google Scholar 

  • Schunker, H., Cameron, R., Gizon, L., Moradi, H.: 2010, Convectively stabilised background solar models for numerical local helioseismology. Solar Phys., in preparation.

  • Solanki, S.K.: 1987, PhD thesis 8309, Institut für Astronomie, ETH Zentrum, Zürich, Switzerland.

  • Solanki, S.K.: 2003, Sunspots: An overview. Astron. Astrophys. Rev. 11, 153 – 286. doi: 10.1007/s00159-003-0018-4 .

    Article  ADS  Google Scholar 

  • Thomas, J.H., Weiss, N.O.: 2008, Sunspots and Starspots. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Wachter, R.: 2008, Instrumental response function for filtergraph instruments. Solar Phys. 251, 491 – 500. doi: 10.1007/s11207-008-9197-5 .

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Gizon.

Additional information

Helioseismology

Guest Editors: G. Houdek, H. Shibahashi, and J. Zhao

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cameron, R.H., Gizon, L., Schunker, H. et al. Constructing Semi-Empirical Sunspot Models for Helioseismology. Sol Phys 268, 293–308 (2011). https://doi.org/10.1007/s11207-010-9631-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-010-9631-3

Keywords

Navigation