Skip to main content

Advertisement

SpringerLink
Temporal Evolution of the Solar-Wind Electron Core Density at Solar Minimum by Correlating SWEA Measurements from STEREO A and B
Download PDF
Download PDF
  • Open Access
  • Published: 28 August 2010

Temporal Evolution of the Solar-Wind Electron Core Density at Solar Minimum by Correlating SWEA Measurements from STEREO A and B

  • A. Opitz1,
  • J.-A. Sauvaud1,
  • A. Fedorov1,
  • P. Wurz2,
  • J. G. Luhmann3,
  • B. Lavraud1,
  • C. T. Russell4,
  • P. Kellogg5,
  • C. Briand6,
  • P. Henri6,
  • D. M. Malaspina7,
  • P. Louarn1,
  • D. W. Curtis3,
  • E. Penou1,
  • R. Karrer2,
  • A. B. Galvin8,
  • D. E. Larson3,
  • I. Dandouras1 &
  • …
  • P. Schroeder3 

Solar Physics volume 266, pages 369–377 (2010)Cite this article

  • 408 Accesses

  • 5 Citations

  • Metrics details

Abstract

The twin STEREO spacecraft provide a unique tool to study the temporal evolution of the solar-wind properties in the ecliptic since their longitudinal separation increases with time. We derive the characteristic temporal variations at ∼ 1 AU between two different plasma parcels ejected from the same solar source by excluding the spatial variations from our datasets. As part of the onboard IMPACT instrument suite, the SWEA electron experiment provides the solar-wind electron core density at two different heliospheric vantage points. We analyze these density datasets between March and August 2007 and find typical solar minimum conditions. After adjusting for the theoretical time lag between the two spacecraft, we compare the two density datasets. We find that their correlation decreases as the time difference increases between two ejections. The correlation coefficient is about 0.80 for a time lag of a half day and 0.65 for two days. These correlation coefficients from the electron core density are somewhat lower than the ones from the proton bulk velocity obtained in an earlier study, though they are still high enough to consider the solar wind as persistent after two days. These quantitative results reflect the variability of the solar-wind properties in space and time, and they might serve as input for solar-wind models.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  • Bougeret, J.L., Goetz, K., Kaiser, M.L., Bale, S.D., Kellogg, P.J., Maksimovic, M., Monge, N., Monson, S.J., Astier, P.L., Davy, S., et al.: 2008, Space Sci. Rev. 136, 487.

    Article  ADS  Google Scholar 

  • Coplan, M.A., Ipavich, F., King, J., Ogilvie, K.W., Roberts, D.A., Lazarus, A.J.: 2001, J. Geophys. Res. 106(A9), 18615.

    Article  ADS  Google Scholar 

  • Fedorov, A., Opitz, A., Sauvaud, J.-A., Luhmann, J., Curtis, D.W., Larson, D.E.: 2010, Space Sci. Rev., in press.

  • Feldman, W.C., Asbridge, J.R., Bame, S.J., Montgomery, M.D., Gary, S.P.: 1975, J. Geophys. Res. 80(31), 4181.

    Article  ADS  Google Scholar 

  • Galvin, A.B., Kistler, L.M., Popecki, M., Farrugia, C.J., Simunac, K.D.C., Ellis, L., Ellis, S., Gaidos, J.A., Granoff, M., Heirtzler, D., et al.: 2008, Space Sci. Rev. 136, 437.

    Article  ADS  Google Scholar 

  • Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C.: 2008, Space Sci. Rev. 136, 5.

    Article  ADS  Google Scholar 

  • Luhmann, J.G., Curtis, D.W., Schroeder, P., McCauley, J., Lin, R.P., Larson, D.E., Bale, S.D., Sauvaud, J.-A., Aoustin, C., Mewaldt, R.A., et al.: 2008, Space Sci. Rev. 136, 117.

    Article  ADS  Google Scholar 

  • Maksimovic, M., Zouganelis, I., Chaufray, J.-Y., Issautier, K., Scime, E.E., Littleton, J.E., Marsch, E., McComas, D.J., Salem, C., Lin, R.P., Elliott, H.: 2005, J. Geophys. Res. 110, A09104.

    Article  Google Scholar 

  • Marsch, E.: 2006, Living Rev. Solar Phys. 3, 1.

    ADS  Google Scholar 

  • McComas, D.J., Bame, S.J., Feldman, W.C., Gosling, J.T., Phillips, J.L.: 1992, Geophys. Res. Lett. 19(12), 1291.

    Article  ADS  Google Scholar 

  • Opitz, A., Karrer, R., Wurz, P., Galvin, A.B., Bochsler, P., Blush, L.M., Daoudi, H., Ellis, L., Farrugia, C.J., Giammanco, C., et al.: 2009, Solar Phys. 256, 365.

    Article  ADS  Google Scholar 

  • Opitz, A., Fedorov, A., Wurz, P., Szego, K., Sauvaud, J.-A., Karrer, R., Galvin, A.B., Barabash, S., Ipavich, F.: 2010, Solar Phys. 264, 377.

    Article  ADS  Google Scholar 

  • Pilipp, W.G., Miggenrieder, H., Montgomery, M.D., Muhlhauser, K.-H., Rosenbauer, H., Schwenn, R.: 1987, J. Geophys. Res. 92(A2), 1075.

    Article  ADS  Google Scholar 

  • Richardson, J.D., Dashevskiy, F., Paularena, K.I.: 1998, J. Geophys. Res. 103(A7), 14619.

    Article  ADS  Google Scholar 

  • Sauvaud, J.-A., Larson, D., Aoustin, C., Curtis, D., Medale, J.-L., Fedorov, A., Rouzaud, J., Luhmann, J., Moreau, T., Schroeder, P., et al.: 2008, Space Sci. Rev. 136, 227.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Centre d’Etude Spatiale des Rayonnements (CNRS-UPS), University of Toulouse, Toulouse, France

    A. Opitz, J.-A. Sauvaud, A. Fedorov, B. Lavraud, P. Louarn, E. Penou & I. Dandouras

  2. Department of Space Science and Planetology, Physics Institute, University of Bern, Bern, Switzerland

    P. Wurz & R. Karrer

  3. Space Sciences Laboratory, University of California, Berkeley, USA

    J. G. Luhmann, D. W. Curtis, D. E. Larson & P. Schroeder

  4. Institute of Geophysics and Planetary Physics, University of California, Los Angeles, USA

    C. T. Russell

  5. Department of Physics and Astronomy, University of Minnesota, Minneapolis, USA

    P. Kellogg

  6. LESIA, Observatoire de Paris, CNRS, Université Pierre et Marie Curie, Université Paris-Diderot, Meudon, France

    C. Briand & P. Henri

  7. Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA

    D. M. Malaspina

  8. Space Science Center, University of New Hampshire, Durham, USA

    A. B. Galvin

Authors
  1. A. Opitz
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. J.-A. Sauvaud
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. A. Fedorov
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. P. Wurz
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. J. G. Luhmann
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. B. Lavraud
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. C. T. Russell
    View author publications

    You can also search for this author in PubMed Google Scholar

  8. P. Kellogg
    View author publications

    You can also search for this author in PubMed Google Scholar

  9. C. Briand
    View author publications

    You can also search for this author in PubMed Google Scholar

  10. P. Henri
    View author publications

    You can also search for this author in PubMed Google Scholar

  11. D. M. Malaspina
    View author publications

    You can also search for this author in PubMed Google Scholar

  12. P. Louarn
    View author publications

    You can also search for this author in PubMed Google Scholar

  13. D. W. Curtis
    View author publications

    You can also search for this author in PubMed Google Scholar

  14. E. Penou
    View author publications

    You can also search for this author in PubMed Google Scholar

  15. R. Karrer
    View author publications

    You can also search for this author in PubMed Google Scholar

  16. A. B. Galvin
    View author publications

    You can also search for this author in PubMed Google Scholar

  17. D. E. Larson
    View author publications

    You can also search for this author in PubMed Google Scholar

  18. I. Dandouras
    View author publications

    You can also search for this author in PubMed Google Scholar

  19. P. Schroeder
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to A. Opitz.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Opitz, A., Sauvaud, JA., Fedorov, A. et al. Temporal Evolution of the Solar-Wind Electron Core Density at Solar Minimum by Correlating SWEA Measurements from STEREO A and B. Sol Phys 266, 369–377 (2010). https://doi.org/10.1007/s11207-010-9613-5

Download citation

  • Received: 01 October 2009

  • Accepted: 12 July 2010

  • Published: 28 August 2010

  • Issue Date: October 2010

  • DOI: https://doi.org/10.1007/s11207-010-9613-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Solar Wind
  • Coronal Mass Ejection
  • Solar Phys
  • Carrington Rotation
  • Stereo Spacecraft
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.