Skip to main content
Log in

Automated Detection of Oscillating Regions in the Solar Atmosphere

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Recently observed oscillations in the solar atmosphere have been interpreted and modeled as magnetohydrodynamic wave modes. This has allowed for the estimation of parameters that are otherwise hard to derive, such as the coronal magnetic-field strength. This work crucially relies on the initial detection of the oscillations, which is commonly done manually. The volume of Solar Dynamics Observatory (SDO) data will make manual detection inefficient for detecting all of the oscillating regions. An algorithm is presented that automates the detection of areas of the solar atmosphere that support spatially extended oscillations. The algorithm identifies areas in the solar atmosphere whose oscillation content is described by a single, dominant oscillation within a user-defined frequency range. The method is based on Bayesian spectral analysis of time series and image filtering. A Bayesian approach sidesteps the need for an a-priori noise estimate to calculate rejection criteria for the observed signal, and it also provides estimates of oscillation frequency, amplitude, and noise, and the error in all of these quantities, in a self-consistent way. The algorithm also introduces the notion of quality measures to those regions for which a positive detection is claimed, allowing for simple post-detection discrimination by the user. The algorithm is demonstrated on two Transition Region and Coronal Explorer (TRACE) datasets, and comments regarding its suitability for oscillation detection in SDO are made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aschwanden, M.J., Fletcher, L., Schrijver, C.J., Alexander, D.: 1999, Coronal loop oscillations observed with the Transition Region and Coronal Explorer. Astrophys. J. 520, 880 – 894. doi: 10.1086/307502 .

    Article  ADS  Google Scholar 

  • Aschwanden, M.J., de Pontieu, B., Schrijver, C.J., Title, A.M.: 2002, Transverse oscillations in coronal loops observed with TRACE II. Measurements of geometric and physical parameters. Solar Phys. 206, 99 – 132. doi: 10.1023/A:1014916701283 .

    Article  ADS  Google Scholar 

  • Aschwanden, M.J., Lee, J.K., Gary, G.A., Smith, M., Inhester, B.: 2008, Comparison of five numerical codes for automated tracing of coronal loops. Solar Phys. 248, 359 – 377. doi: 10.1007/s11207-007-9064-9 .

    Article  ADS  Google Scholar 

  • Bayes, T.: 1763, An essay towards solving a problem in the doctrine of chances. Philos. Trans. Roy. Soc. 53, 370 – 418. http://rstl.royalsocietypublishing.org/content/53/370 .

    Article  Google Scholar 

  • Berger, T.E., de Pontieu, B., Fletcher, L., Schrijver, C.J., Tarbell, T.D., Title, A.M.: 1999, What is moss? Solar Phys. 190, 409 – 418. doi: 10.1023/A:1005286503963 .

    Article  ADS  Google Scholar 

  • Berghmans, D., Clette, F.: 1999, Active region EUV transient brightenings – first results by EIT of SOHO JOP80. Solar Phys. 186, 207 – 229.

    Article  ADS  Google Scholar 

  • Bretthorst, G.L.: 1988, Lecture Notes in Statistics: Bayesian Spectrum Analysis and Parameter Estimation, Springer, Berlin.

    Google Scholar 

  • Chatfield, C.: 1996, The Analysis of Time Series: An Introduction, 5th edn. Chapman and Hall, London.

    MATH  Google Scholar 

  • Cooley, J., Tukey, J.: 1965, An algorithm for the machine computation of complex Fourier series. Math. Comput. 19, 297 – 301.

    MATH  MathSciNet  Google Scholar 

  • De Moortel, I.: 2005, An overview of coronal seismology. Roy. Soc. London Philos. Trans., Ser. A 363, 2743 – 2760.

    Article  ADS  Google Scholar 

  • De Moortel, I., Hood, A.W.: 2003, The damping of slow MHD waves in solar coronal magnetic fields. Astron. Astrophys. 408, 755 – 765. doi: 10.1051/0004-6361:20030984 .

    Article  ADS  Google Scholar 

  • De Moortel, I., Hood, A.W.: 2004, The damping of slow MHD waves in solar coronal magnetic fields. II. The effect of gravitational stratification and field line divergence. Astron. Astrophys. 415, 705 – 715. doi: 10.1051/0004-6361:20034233 .

    Article  ADS  Google Scholar 

  • De Moortel, I., McAteer, R.T.J.: 2004, Waves and wavelets: An automated detection technique for solar oscillations. Solar Phys. 223, 1 – 11. doi: 10.1007/s11207-004-0806-7 .

    Article  ADS  Google Scholar 

  • De Moortel, I., Ireland, J., Walsh, R.W.: 2000, Observation of oscillations in coronal loops. Astron. Astrophys. 355, L23 – L26.

    ADS  Google Scholar 

  • De Moortel, I., Ireland, J., Hood, A.W., Walsh, R.W.: 2002, The detection of 3 and 5 min period oscillations in coronal loops. Astron. Astrophys. 387, L13 – L16. doi: 10.1051/0004-6361:20020436 .

    Article  ADS  Google Scholar 

  • de Pontieu, B., Erdélyi, R., James, S.P.: 2004, Solar chromospheric spicules from the leakage of photospheric oscillations and flows. Nature 430, 536 – 539. doi: 10.1038/nature02749 .

    Article  ADS  Google Scholar 

  • de Pontieu, B., Erdélyi, R., De Moortel, I.: 2005, How to channel photospheric oscillations into the corona. Astrophys. J. Lett. 624, L61 – L64. doi: 10.1086/430345 .

    Article  ADS  Google Scholar 

  • de Pontieu, B., Berger, T.E., Schrijver, C.J., Title, A.M.: 1999, Dynamics of transition region ‘moss’ at high time resolution. Solar Phys. 190, 419 – 435. doi: 10.1023/A:1005220606223 .

    Article  ADS  Google Scholar 

  • Deforest, C.E., Gurman, J.B.: 1998, Observation of quasi-periodic compressive waves in solar polar plumes. Astrophys. J. Lett. 501, L217. doi: 10.1086/311460 .

    Article  ADS  Google Scholar 

  • Fletcher, L., de Pontieu, B.: 1999, Plasma diagnostics of transition region “moss” using SOHO/CDS and TRACE. Astrophys. J. Lett. 520, L135 – L138. doi: 10.1086/312157 .

    Article  ADS  Google Scholar 

  • Grechnev, V.V.: 2003, A method to analyze imaging radio data on solar flares. Solar Phys. 213, 103 – 110.

    Article  ADS  Google Scholar 

  • Gregory, P.C.: 2005, Bayesian Logical Data Analysis for the Physical Sciences: A Comparative Approach with ‘Mathematica’ Support, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Ireland, J., De Moortel, I.: 2002, Application of wavelet analysis to transversal coronal loop oscillations. Astron. Astrophys. 391, 339 – 351. doi: 10.1051/0004-6361:20020643 .

    Article  ADS  Google Scholar 

  • Ireland, J., Walsh, R.W., Harrison, R.A., Priest, E.R.: 1999, A wavelet analysis of active region oscillations. Astron. Astrophys. 347, 355 – 365.

    ADS  Google Scholar 

  • Jaynes, E.T.: 1987, Bayesian spectrum and chirp analysis. In: Smith, C.R., Erickson, G.J. (eds.) Maximum Entropy and Bayesian Spectral Analysis and Estimation Problems, Reidel, Dordrecht, 1 – 37.

    Google Scholar 

  • Jaynes, E.T.: 2003, Probability Theory: The Logic Of Science, 1st edn. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Katsiyannis, A.C., Williams, D.R., McAteer, R.T.J., Gallagher, P.T., Keenan, F.P., Murtagh, F.: 2003, Eclipse observations of high-frequency oscillations in active region coronal loops. Astron. Astrophys. 406, 709 – 714. doi: 10.1051/0004-6361:20030458 .

    Article  ADS  Google Scholar 

  • King, D.B., Nakariakov, V.M., Deluca, E.E., Golub, L., McClements, K.G.: 2003, Propagating EUV disturbances in the Solar corona: Two-wavelength observations. Astron. Astrophys. 404, L1 – L4. doi: 10.1051/0004-6361:20030763 .

    Article  ADS  Google Scholar 

  • Linnell-Nemec, A.F., Nemec, J.M.: 1985, A test of significance for periods derived using phase-dispersion-minimization techniques. Astron. J. 90, 2317 – 2320. doi: 10.1086/113936 .

    Article  ADS  Google Scholar 

  • Marsh, M.S., Ireland, J., Kucera, T.: 2008, Bayesian analysis of solar oscillations. Astrophys. J. 681, 672 – 679. doi: 10.1086/588751 .

    Article  ADS  Google Scholar 

  • McAteer, R.T.J., Gallagher, P.T., Bloomfield, D.S., Williams, D.R., Mathioudakis, M., Keenan, F.P.: 2004, Ultraviolet oscillations in the chromosphere of the quiet Sun. Astrophys. J. 602, 436 – 445. doi: 10.1086/380835 .

    Article  ADS  Google Scholar 

  • McIntosh, S.W., Fleck, B., Tarbell, T.D.: 2004, Chromospheric oscillations in an equatorial coronal hole. Astrophys. J. Lett. 609, L95 – L98. doi: 10.1086/422748 .

    Article  ADS  Google Scholar 

  • McIntosh, S.W., de Pontieu, B., Tomczyk, S.: 2008, A coherence-based approach for tracking waves in the solar corona. Solar Phys. 252, 321 – 348. doi: 10.1007/s11207-008-9257-x .

    Article  ADS  Google Scholar 

  • Nakariakov, V.M., King, D.B.: 2007, Coronal periodmaps. Solar Phys. 241, 397 – 409. doi: 10.1007/s11207-007-0348-x .

    Article  ADS  Google Scholar 

  • Nakariakov, V.M., Verwichte, E.: 2005, Coronal waves and oscillations. Living Rev. Solar Phys. 2, 3.

    ADS  Google Scholar 

  • Nakariakov, V.M., Ofman, L., Deluca, E.E., Roberts, B., Davila, J.M.: 1999, TRACE observation of damped coronal loop oscillations: Implications for coronal heating. Science 285, 862 – 864. doi: 10.1126/science.285.5429.862 .

    Article  ADS  Google Scholar 

  • Nakariakov, V.M., Arber, T.D., Ault, C.E., Katsiyannis, A.C., Williams, D.R., Keenan, F.P.: 2004, Time signatures of impulsively generated coronal fast wave trains. Mon. Not. Roy. Astron. Soc. 349, 705 – 709. doi: 10.1111/j.1365-2966.2004.07537.x .

    Article  ADS  Google Scholar 

  • Nightingale, R.W., Aschwanden, M.J., Hurlburt, N.E.: 1999, Time variability of EUV brightenings in coronal loops observed with TRACE. Solar Phys. 190, 249 – 265. doi: 10.1023/A:1005211618498 .

    Article  ADS  Google Scholar 

  • Ofman, L., Romoli, M., Poletto, G., Noci, G., Kohl, J.L.: 1997, Ultraviolet coronagraph spectrometer observations of density fluctuations in the solar wind. Astrophys. J. Lett. 491, L111. doi: 10.1086/311067 .

    Article  ADS  Google Scholar 

  • O’Ruanaidh, J.K., Fitzgerald, W.J.: 1996, Numerical Bayesian Methods Applied to Signal Processing, Springer, New York.

    MATH  Google Scholar 

  • O’Shea, E., Banerjee, D., Doyle, J.G., Fleck, B., Murtagh, F.: 2001, Active region oscillations. Astron. Astrophys. 368, 1095 – 1107. doi: 10.1051/0004-6361:20010073 .

    Article  ADS  Google Scholar 

  • Robbrecht, E., Verwichte, E., Berghmans, D., Hochedez, J.F., Poedts, S., Nakariakov, V.M.: 2001, Slow magnetoacoustic waves in coronal loops: EIT and TRACE. Astron. Astrophys. 370, 591 – 601. doi: 10.1051/0004-6361:20010226 .

    Article  ADS  Google Scholar 

  • Schuster, A.: 1898, On the investigation of hidden periodicities with application to a supposed 26 day period of meteorological phenomena. Terr. Magn. 3, 13 – 13.

    Article  Google Scholar 

  • Sych, R.A., Nakariakov, V.M.: 2008, The pixelised wavelet filtering method to study waves and oscillations in time sequences of solar atmospheric images. Solar Phys. 248, 395 – 408. doi: 10.1007/s11207-007-9005-7 .

    Article  ADS  Google Scholar 

  • Torrence, C., Compo, G.P.: 1998, A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61 – 78. doi: 10.1175/1520-0477(1998)079 .

    Article  ADS  Google Scholar 

  • Verwichte, E., Nakariakov, V.M., Ofman, L., Deluca, E.E.: 2004, Characteristics of transverse oscillations in a coronal loop arcade. Solar Phys. 223, 77 – 94. doi: 10.1007/s11207-004-0807-6 .

    Article  ADS  Google Scholar 

  • Williams, D.R., Phillips, K.J.H., Rudawy, P., Mathioudakis, M., Gallagher, P.T., O’Shea, E., Keenan, F.P., Read, P., Rompolt, B.: 2001, High-frequency oscillations in a solar active region coronal loop. Mon. Not. Roy. Astron. Soc. 326, 428 – 436. doi: 10.1046/j.1365-8711.2001.04491.x .

    Article  ADS  Google Scholar 

  • Williams, D.R., Mathioudakis, M., Gallagher, P.T., Phillips, K.J.H., McAteer, R.T.J., Keenan, F.P., Rudawy, P., Katsiyannis, A.C.: 2002, An observational study of a magneto-acoustic wave in the solar corona. Mon. Not. Roy. Astron. Soc. 336, 747 – 752. doi: 10.1046/j.1365-8711.2002.05764.x .

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ireland.

Additional information

Solar Image Processing and Analysis

Guest Editors: J. Ireland and C.A. Young.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ireland, J., Marsh, M.S., Kucera, T.A. et al. Automated Detection of Oscillating Regions in the Solar Atmosphere. Sol Phys 264, 403–431 (2010). https://doi.org/10.1007/s11207-010-9592-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-010-9592-6

Keywords

Navigation