Solar Physics

, Volume 265, Issue 1–2, pp 31–48 | Cite as

Faraday Rotation Response to Coronal Mass Ejection Structure

  • E. A. Jensen
  • P. P. Hick
  • M. M. Bisi
  • B. V. Jackson
  • J. Clover
  • T. Mulligan
Open Access
Remote Sensing of the Inner Heliosphere


We present the results from modeling the coronal mass ejection (CME) properties that have an effect on the Faraday rotation (FR) signatures that may be measured with an imaging radio antenna array such as the Murchison Widefield Array (MWA). These include the magnetic flux rope orientation, handedness, magnetic-field magnitude, velocity, radius, expansion rate, electron density, and the presence of a shock/sheath region. We find that simultaneous multiple radio source observations (FR imaging) can be used to uniquely determine the orientation of the magnetic field in a CME, increase the advance warning time on the geoeffectiveness of a CME by an order of magnitude from the warning time possible from in-situ observations at L1, and investigate the extent and structure of the shock/sheath region at the leading edge of fast CMEs. The magnetic field of the heliosphere is largely “invisible” with only a fraction of the interplanetary magnetic-field lines convecting past the Earth; remote sensing the heliospheric magnetic field through FR imaging from the MWA will advance solar physics investigations into CME evolution and dynamics.


Coronal mass ejections Helicity, magnetic Helicity, observations Helicity, theory Instrumental effects Integrated Sun observations Magnetic fields, corona Magnetic fields, interplanetary Magnetic fields, models Polarization, radio Radio scintillation Rotation Solar wind, disturbances Solar wind, theory 


  1. Anselmo, J.C.: 1997, Solar storm eyed as satellite killer. Aviat. Week Space Technol. 146, 61. Google Scholar
  2. Badruddin, Singh, Y.P.: 2009, Geoeffectiveness of magnetic cloud, shock/sheath, interaction region, high-speed stream and their combined occurrence. Planet. Space Sci. 57, 318 – 331. doi:10.1016/j.pss.2008.12.009. CrossRefADSGoogle Scholar
  3. Bird, M.K., Volland, H., Howard, R.A., Koomen, M.J., Michels, D.J., Sheeley, N.R. Jr., Amstrong, J.W., Seidel, B.L., Stelzried, C.T., Woo, R.: 1985, White-light and radio sounding observations of coronal transients. Solar Phys. 98, 341 – 368. doi:10.1007/BF00152465. CrossRefADSGoogle Scholar
  4. Cannon, A.R.: 1976, Radio frequency probing of the solar corona. PhD thesis, California Univ., Berkeley. Google Scholar
  5. Cliver, E.W., Svalgaard, L.: 2004, The 1859 Solar-terrestrial disturbance and the current limits of extreme space weather activity. Solar Phys. 224, 407 – 422. doi:10.1007/s11207-005-4980-z. CrossRefADSGoogle Scholar
  6. Committee on the Societal, Economic Impacts of Severe Space Weather Events: 2008, Severe space weather events – Understanding societal and economic impacts. A Workshop Report. Technical report. Google Scholar
  7. Dunn, T., Jackson, B.V., Hick, P.P., Buffington, A., Zhao, X.P.: 2005, Comparative analyses of the CSSS calculation in the UCSD tomographic solar observations. Solar Phys. 227, 339 – 353. doi:10.1007/s11207-005-2759-x. CrossRefADSGoogle Scholar
  8. Forsyth, R.J., Bothmer, V., Cid, C., Crooker, N.U., Horbury, T.S., Kecskemety, K., Klecker, B., Linker, J.A., Odstrcil, D., Reiner, M.J., Richardson, I.G., Rodriguez-Pacheco, J., Schmidt, J.M., Wimmer-Schweingruber, R.F.: 2006, ICMEs in the inner heliosphere: Origin, evolution and propagation effects. Report of working group G. Space Sci. Rev. 123, 383 – 416. doi:10.1007/s11214-006-9022-0. CrossRefADSGoogle Scholar
  9. Glaser, D., Beals, K., Pompea, S., Willard, C.: 2003, Living with a Star: GEMS Teacher’s Guide Website, The Regents of the University of California.
  10. Jackson, B.V., Buffington, A., Hick, P.P., Wang, X., Webb, D.: 2006, Preliminary three-dimensional analysis of the heliospheric response to the 28 October 2003 CME using SMEI white-light observations. J. Geophys. Res. (Space Phys.) 111, 4. doi:10.1029/2004JA010942. Google Scholar
  11. Jensen, E.A., Russell, C.T.: 2008, Faraday rotation observations of CMEs. Geophys. Res. Lett. 35, 2103. doi:10.1029/2007GL031038. CrossRefGoogle Scholar
  12. Kane, R.P.: 2007, Solar terrestrial effects of two distinct types. Adv. Space Res. 39, 1890 – 1897. doi:10.1016/j.asr.2007.02.006. CrossRefADSGoogle Scholar
  13. Levy, G.S., Sato, T., Seidel, B.L., Stelzried, C.T., Ohlson, J.E., Rusch, W.V.T.: 1969, Pioneer 6: Measurement of transient Faraday rotation phenomena observed during solar occultation. Science 166, 596 – 598. doi:10.1126/science.166.3905.596. CrossRefADSGoogle Scholar
  14. Lindsay, G.M., Luhmann, J.G., Russell, C.T., Gosling, J.T.: 1999, Relationships between coronal mass ejection speeds from coronagraph images and interplanetary characteristics of associated interplanetary coronal mass ejections. J. Geophys. Res. 104, 12515 – 12524. doi:10.1029/1999JA900051. CrossRefADSGoogle Scholar
  15. Liu, Y., Manchester, W.B., Richardson, J.D., Luhmann, J.G., Lin, R.P., Bale, S.D.: 2008, Deflection flows ahead of ICMEs as an indicator of curvature and geoeffectiveness. J. Geophys. Res. (Space Phys.) 113, A00B03. doi:10.1029/2007JA012996. CrossRefGoogle Scholar
  16. Livesey, R.J.: 1998, The Sun, interplanetary weather and mankind’s technologies. J. Br. Astron. Assoc. 108, 207 – 209. ADSGoogle Scholar
  17. Mulligan, T., Russell, C.T.: 2001, Multispacecraft modeling of the flux rope structure of interplanetary coronal mass ejections: Cylindrically symmetric versus nonsymmetric topologies. J. Geophys. Res. 106, 10581 – 10596. doi:10.1029/2000JA900170. CrossRefADSGoogle Scholar
  18. Mulligan, T.L.: 2002, The structure of interplanetary coronal mass ejections and their solar origins. PhD thesis, University of California, Los Angeles. Google Scholar
  19. Nelder, J.A., Mead, R.: 1965, A simplex method for function minimization. Comput. J. 7, 308 – 313. doi:10.1093/comjnl/7.4.308. MATHGoogle Scholar
  20. NOAA Space Weather Prediction Center: 2003, ACE real time solar wind news and announcements. Technical report.
  21. Nordwall, B.D.: 1996, Atmospheric/multipath concerns for D-GPS. Aviat. Week Space Technol. 145, 60. Google Scholar
  22. Odenwald, S.: 1999, Solar storms. The Washington Post, H01. Google Scholar
  23. Russell, C.T., Mulligan, T.: 2003, The limitation of Bessel functions for ICME modeling. In: Velli, M., Bruno, R., Malara, F., Bucci, B. (eds.) Solar Wind Ten, AIP Conf. Proc. 679, 125 – 128. Google Scholar
  24. Salah, J.E., Lonsdale, C.J., Oberoi, D., Cappallo, R.J., Kasper, J.C.: 2005, Space weather capabilities of low frequency radio arrays. In: Fineschi, S., Viereck, R.A. (eds.) SPIE Conf. Ser. 5901, 124 – 134. doi:10.1117/12.613448.
  25. Skoug, R.M., Gosling, J.T., Steinberg, J.T., McComas, D.J., Smith, C.W., Ness, N.F., Hu, Q., Burlaga, L.F.: 2004, Extremely high speed solar wind: 29 – 30 October 2003. J. Geophys. Res. (Space Phys.) 109, 9102. doi:10.1029/2004JA010494. CrossRefGoogle Scholar
  26. Smith, E.A.: 1988, Correlations between solar activity and operationally determined satellite drag variation parameters. In: Flight Mechanics/Estimation Theory Symposium, 571 – 594. Google Scholar
  27. Stelzried, C.T.: 1968, A Faraday rotation measurement of a 13-cm signal in the solar corona. Technical Report 32-1401, Jet Propulsion Laboratory, Pasadena, CA 91109. Google Scholar
  28. Subramanian, P., Vourlidas, A.: 2007, Energetics of solar coronal mass ejections. Astron. Astrophys. 467, 685 – 693. doi:10.1051/0004-6361:20066770. CrossRefADSGoogle Scholar
  29. Taylor, J.B.: 1986, Relaxation and magnetic reconnection in plasmas. Rev. Mod. Phys. 58, 741 – 763. doi:10.1103/RevModPhys.58.741. CrossRefADSGoogle Scholar
  30. Tokumaru, M., Kojima, M., Fujiki, K., Yamashita, M., Jackson, B.V.: 2007, The source and propagation of the interplanetary disturbance associated with the full-halo coronal mass ejection on 28 October 2003. J. Geophys. Res. (Space Phys.) 112, 5106. doi:10.1029/2006JA012043. CrossRefGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • E. A. Jensen
    • 1
    • 2
  • P. P. Hick
    • 3
  • M. M. Bisi
    • 4
    • 5
  • B. V. Jackson
    • 5
  • J. Clover
    • 5
  • T. Mulligan
    • 6
  1. 1.ACS ConsultingHoustonUSA
  2. 2.MMT ObservatoryAmadoUSA
  3. 3.University of CaliforniaSan DiegoUSA
  4. 4.Institute of Mathematical and Physical SciencesAberystwythWales, UK
  5. 5.University of California/CASSSan DiegoUSA
  6. 6.Aerospace CorpLos AngelesUSA

Personalised recommendations