Advertisement

Solar Physics

, Volume 262, Issue 2, pp 495–509 | Cite as

Dynamic Three-Dimensional Tomography of the Solar Corona

  • M. D. ButalaEmail author
  • R. J. Hewett
  • R. A. Frazin
  • F. Kamalabadi
Solar Image Processing and Analysis

Abstract

Empirical, three-dimensional electron-density maps of the solar corona can be tomographically reconstructed using polarized-brightness images measured from ground- and space-based observatories. Current methods for computing these reconstructions require the assumption that the structure of the corona is unchanging with time. We present the first global reconstructions that do away with this static assumption and, as a result, allow for a more accurate empirical determination of the dynamic solar corona. We compare the new dynamic reconstructions of the coronal density during February 2008 to a sequence of static reconstructions. We find that the new dynamic reconstructions are less prone to certain computational artifacts that may plague the static reconstructions. In addition, these benefits come without a significant increase in computational cost.

Keywords

Corona Tomography Statistical image processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aschwanden, M.J.: 2004, Physics of the Solar Corona, Springer, Berlin. Google Scholar
  2. Barbey, N., Auchère, F., Rodet, T., Vial, J.C.: 2008, A time-evolving 3D method dedicated to the reconstruction of solar plumes and results using extreme ultraviolet data. Solar Phys. 248, 409 – 423. CrossRefADSGoogle Scholar
  3. Butala, M.D., Frazin, R.A., Kamalabadi, F.: 2005, Three-dimensional estimates of the coronal electron density at times of extreme solar activity. J. Geophys. Res. 110, A09S09. doi: 10.1029/2004JA010938. CrossRefGoogle Scholar
  4. Butala, M.D., Kamalabadi, F., Frazin, R.A., Chen, Y.: 2008, Dynamic tomographic imaging of the solar corona. IEEE J. Sel. Top. Signal Process. 2, 755 – 766. CrossRefGoogle Scholar
  5. Butala, M.D., Frazin, R.A., Chen, Y., Kamalabadi, F.: 2009, Tomographic imaging of dynamic objects with the ensemble Kalman filter. IEEE Trans. Image Process. 18, 1573 – 1587. CrossRefADSGoogle Scholar
  6. Cohen, O., Sokolov, I.V., Roussev, I.I., Arge, C.N., Manchester, W.B., Gombosi, T.I., Frazin, R.A., Park, H., Butala, M.D., Kamalabadi, F., Velli, M.: 2007, A semiempirical magnetohydrodynamical model of the solar wind. Astrophys. J. Lett. 654, 163 – 166. CrossRefADSGoogle Scholar
  7. Davila, J.M.: 1994, Solar tomography. Astrophys. J. 423, 871 – 877. CrossRefADSGoogle Scholar
  8. Demoment, G.: 1989, Image reconstruction and restoration: Overview of common estimation structures and problems. IEEE Trans. Acoust. Speech Signal Process. 37(12), 2024 – 2036. CrossRefGoogle Scholar
  9. Dunn, T., Jackson, B.V., Hick, P.P., Buffington, A., Zhao, X.P.: 2005, Comparative analysis of the CSSS calculation in the UCSD tomographic solar observations. Solar Phys. 227, 339 – 353. CrossRefADSGoogle Scholar
  10. Evensen, G.: 1994, Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. 99, 10143 – 10162. CrossRefADSGoogle Scholar
  11. Evensen, G.: 2003, The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn. 53, 343 – 367. CrossRefADSGoogle Scholar
  12. Frazin, R.A., Kamalabadi, F.: 2005, Rotational tomography for 3D reconstruction in the post-SOHO era. Solar Phys. 228, 219 – 237. CrossRefADSGoogle Scholar
  13. Frazin, R.A., Butala, M.D., Kemball, A., Kamalabadi, F.: 2005, Time-dependent reconstruction of nonstationary objects with tomographic or interferometric measurements. Astrophys. J. Lett. 635, L197 – L200. CrossRefADSGoogle Scholar
  14. Giordano, S., Mancuso, S.: 2008, Coronal rotation at solar minimum from UV observations. Astrophys. J. 688, 656 – 668. CrossRefADSGoogle Scholar
  15. Golub, G.H., Heath, M., Wahba, G.: 1979, Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21(2), 215 – 223. zbMATHCrossRefMathSciNetGoogle Scholar
  16. Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., Thompson, W.T., St. Cyr, O.C., Mentzell, E., Mehalick, K., Lemen, J.R., Wuelser, J.P., Duncan, D.W., Tarbell, T.D., Wolfson, C.J., Moore, A., Harrison, R.A., Waltham, N.R., Lang, J., Davis, C.J., Eyles, C.J., Mapson-Menard, H., Simnett, G.M., Halain, J.P., Defise, J.M., Mazy, E., Rochus, P., Mercier, R., Ravet, M.F., Delmotte, F., Auchere, F., Delaboudinière, J.P., Bothmer, V., Deutsch, W., Wang, D., Rich, N., Cooper, S., Stephens, V., Maahs, G., Baugh, R., McMullin, D., Carter, T.: 2008, Sun Earth connection coronal and heliospheric investigation (SECCHI). Space Sci. Rev. 136, 67 – 115. CrossRefADSGoogle Scholar
  17. Johns, C.J., Mandel, J.: 2008, A two-stage ensemble Kalman filter for smooth data assimilation. Environ. Ecol. Stat. 15, 101 – 110. CrossRefMathSciNetGoogle Scholar
  18. Kailath, T., Sayed, A.H., Hassibi, B.: 2000, Linear Estimation, Prentice-Hall, Upper Saddle River. Google Scholar
  19. Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2007, The STEREO mission: An introduction. Space Sci. Rev. 136, 5 – 16. CrossRefADSGoogle Scholar
  20. Kalman, R.E.: 1960, A new approach to linear filtering and prediction problems. J. Basic Eng., Trans. ASME 82, 35 – 45. Google Scholar
  21. Kramar, M., Jones, S., Davila, J., Inhester, B., Mierla, M.: 2009, On the tomographic reconstruction of the 3D electron density for the solar corona from STEREO COR1 data. Solar Phys. 259, 109 – 121. CrossRefADSGoogle Scholar
  22. Thompson, W.T., Reginald, N.L.: 2008, The radiometric and pointing calibration of SECCHI COR1 on STEREO. Solar Phys. 250, 443 – 454. CrossRefADSGoogle Scholar
  23. Thompson, W.T., Davila, J.M., Fisher, R.R., Orwig, L.E., Mentzell, J.E., Hetherington, S.E., Derro, R.J., Federline, R.E., Clark, D.C., Chen, P.T., Tveekrem, J.L., Martino, A.J., Novello, J., Wesenberg, R.P., St. Cyr, O.C., Reginald, N.L., Howard, R.A., Mehalick, K.I., Hersh, M.J., Newman, M.D., Thomas, D.L., Card, G., Elmore, D.: 2003, The COR1 inner coronagraph for STEREO-SECCHI. Proc. SPIE 4853, 1 – 11. CrossRefADSGoogle Scholar
  24. van de Hulst, H.C.: 1950, The electron density of the solar corona. Bull. Astron. Inst. Neth. 11(410), 135 – 150. ADSGoogle Scholar
  25. Vásquez, A.M., Frazin, R.A., Hayashi, K., Sokolov, I.V., Cohen, O., Manchester, W.B. IV, Kamalabadi, F.: 2008, Validation of two MHD models of the solar corona with rotational tomography. Astrophys. J. 682, 1328 – 1337. CrossRefADSGoogle Scholar
  26. Wiegelmann, T., Inhester, B.: 2003, Magnetic field modeling and tomograph: First steps towards a consistence reconstruction of the solar corona. Solar Phys. 214, 287 – 312. CrossRefADSGoogle Scholar
  27. Zhang, Y., Ghodrati, A., Brooks, D.H.: 2005, An analytical comparison of three spatio-temporal regularization methods for dynamic linear inverse problems in a common statistical framework. Inverse Probl. 21, 357 – 382. zbMATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • M. D. Butala
    • 1
    Email author
  • R. J. Hewett
    • 1
  • R. A. Frazin
    • 2
  • F. Kamalabadi
    • 1
  1. 1.University of Illinois at Urbana-ChampaignChampaignUSA
  2. 2.University of MichiganAnn ArborUSA

Personalised recommendations