Advertisement

Solar Physics

, Volume 262, Issue 2, pp 355–371 | Cite as

Using Active Contours for Semi-Automated Tracking of UV and EUV Solar Flare Ribbons

  • C. D. GillEmail author
  • L. Fletcher
  • S. Marshall
Solar Image Processing and Analysis

Abstract

Solar-flare UV and EUV images show elongated bright “ribbons” that move over time. If these ribbons are assumed to locate the footpoints of magnetic-field lines reconnecting in the corona, then it is clear that studying their evolution can provide important insight into the reconnection process. An image-processing method based on active contours (commonly referred to as “snakes”) is proposed as a method for tracking UV and EUV flare ribbons and is tested on images from the Transition Region and Coronal Explorer (TRACE). This paper introduces the basic concepts of such an approach with a brief overview of the history and theory behind active contours. It then details the specifics of the snake algorithm developed for this work and shows the results of running the algorithm on test images. The results from the application of the developed algorithm are reported for six different TRACE flares (five in UV and one in EUV). The discussion of these results uses the output from an expert tracking the same ribbons by eye as a benchmark, and against these the snake algorithm is shown to compare favourably in certain conditions, but less so in others. The applicability of the automated snake algorithm to the general problem of ribbon tracking is discussed and suggestions for ways to improve the snake algorithm are proposed.

Keywords

Flares 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aboudarham, J., Scholl, I., Fuller, N., Fouesneau, M., Galametz, M., Gonon, F., Maire, A., Leroy, Y.: 2008, Automatic detection and tracking of filaments for a solar feature database. Ann. Geophys. 26, 243 – 248. ADSCrossRefGoogle Scholar
  2. Asai, A., Yokoyama, T., Shimojo, M., Masuda, S., Shibata, K.: 2006, Flare ribbon expansion and energy release. J. Astrophys. Astron. 27, 167 – 173. CrossRefADSGoogle Scholar
  3. Bernasconi, P.N., Rust, D.M., Hakim, D.: 2005, Advanced automated solar filament detectio and characterization code: Description, performance and results. Solar Phys. 228, 97 – 117. CrossRefADSGoogle Scholar
  4. Brown, J.C.: 1973, The temperature structure of chromospheric flares heated by non-thermal electrons. Solar Phys. 31, 143 – 169. doi: 10.1007/BF00156080. CrossRefADSGoogle Scholar
  5. Brown, J.C., Spicer, D.S., Melrose, D.B.: 1979, Production of a collisionless conduction front by rapid coronal heating and its role in solar hard X-ray bursts. Astrophys. J. 228, 592 – 597. doi: 10.1086/156883. CrossRefADSGoogle Scholar
  6. Brown, J.C., Karlicky, M., MacKinnon, A.L., van den Oord, G.H.J.: 1990, Beam heating in solar flares – electrons or protons? Astrophys. J. Suppl. 73, 343 – 348. doi: 10.1086/191470. CrossRefADSGoogle Scholar
  7. Carmichael, H.: 1964, A process for flares. In: Hess, W.N. (ed.) The Physics of Solar Flares, NASA, Washington, 451. Google Scholar
  8. Chapman, G.A., Groisman, G.: 1984, A digital analysis of sunspot areas. Solar Phys. 91, 45 – 50. ADSGoogle Scholar
  9. Chapman, G.A., Cookson, A.M., Hoyt, D.V.: 1994, Solar irradiance from Nimbus-7 compared with ground-based photometry. Solar Phys. 149, 249 – 255. CrossRefADSGoogle Scholar
  10. Cohen, L.: 1991, On active contour models and balloons. Comput. Vis. Graph. Image Process.: Image Underst. 53, 211 – 218. zbMATHGoogle Scholar
  11. Colak, T., Qahwaji, R.: 2008, Automated McIntosh-based classification of sunspot groups using MDI images. Solar Phys. 248, 277 – 296. doi: 10.1007/s11207-007-9094-3. CrossRefADSGoogle Scholar
  12. Corpetti, T., Planchon, O., Dubreuil, V.: 2006, Detection of the sea breeze front from satellite images using an active contour method and wavelets. In: IEEE International Conference on Geoscience and Remote Sensing Symposium, 2006. IGARSS 2006, 2810 – 2813. Google Scholar
  13. Curto, J., Blanca, M., Martínez, E.: 2008, Automatic sunspots detection on full-disk solar images using mathematical morphology. Solar Phys. 250, 411 – 429. CrossRefADSGoogle Scholar
  14. Davies, E.R.: 2005, Machine Vision; Theory, Algorithms, Practicalities, 3rd edn., Elsevier, Amsterdam. Google Scholar
  15. Delouille, V., de Patoul, J., Hochedez, J.F., Jacques, L., Antoine, J.P.: 2005, Wavelet spectrum analysis of EIT/SOHO images. Solar Phys. 228, 301 – 321. doi: 10.1007/s11207-005-5620-3. CrossRefADSGoogle Scholar
  16. Fletcher, L., Hudson, H.S.: 2001, The magnetic structure and generation of EUV flare ribbons. Solar Phys. 204, 69 – 89. doi: 10.1023/A:1014275821318. CrossRefADSGoogle Scholar
  17. Fletcher, L., Hudson, H.S.: 2008, Impulsive phase flare energy transport by large-scale Alfvén waves and the electron acceleration problem. Astrophys. J. 675, 1645 – 1655. doi: 10.1086/527044. CrossRefADSGoogle Scholar
  18. Fletcher, L., Pollock, J.A., Potts, H.E.: 2004, Tracking of TRACE ultraviolet flare footpoints. Solar Phys. 222, 279 – 298. doi: 10.1023/B:SOLA.0000043580.89730.4d. CrossRefADSGoogle Scholar
  19. Freeland, S.L., Handy, B.N.: 1998, Data analysis with the SolarSoft system. Solar Phys. 182, 497 – 500. CrossRefADSGoogle Scholar
  20. Gao, J., Wang, H., Zhou, M.: 2002, Development of an automatic filament disappearance detection system. Solar Phys. 205, 93 – 103. CrossRefADSGoogle Scholar
  21. Gonzalez, R.C., Woods, R.E.: 2007, Digital Image Processing, 3rd edn., Pearson Prentice Hall, New York. ISBN 013168728X, 9780131687288. Google Scholar
  22. Gurman, J.B.: 2001, Did I say terabyte? I meant petabyte: Data archiving in the era of SDO. AGU Spring Meeting Abstracts, 21. Google Scholar
  23. Henoux, J.C., Rust, D.: 1980, Horizontal distribution of the X-ray energy deposit in the chromosphere and H alpha two ribbon flares. Astron. Astrophys. 91, 322 – 327. ADSGoogle Scholar
  24. Hirayama, T.: 1974, Theoretical model of flares and prominences. I: Evaporating flare model. Solar Phys. 34, 323 – 338. doi: 10.1007/BF00153671. CrossRefADSGoogle Scholar
  25. Kass, M., Witkin, A., Terzopoulos, D.: 1988, Snakes: Active contour models. Int. J. Comput. Vis. 1, 321 – 331. CrossRefGoogle Scholar
  26. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: 1983, Optimization by simulated annealing. Science 220(4598), 671 – 680. CrossRefMathSciNetADSGoogle Scholar
  27. Kopp, R.A., Pneuman, G.W.: 1976, Magnetic reconnection in the corona and the loop prominence phenomenon. Solar Phys. 50, 85 – 98. doi: 10.1007/BF00206193. CrossRefADSGoogle Scholar
  28. Kurokawa, H.: 1989, High-resolution observations of H-alpha flare regions. Space Sci. Rev. 51, 49 – 84. CrossRefADSGoogle Scholar
  29. Leroy, B., Herlin, I., Cohen, L.D.: 1996, Multi_Resolution algorithms for active contour models. In: 12th International Conference on Analysis and Optimization of Systems, Springer, Berlin, 58 – 65. Google Scholar
  30. Marshall, S., Fletcher, L., Hough, K.: 2006, Optimal filtering of solar images using soft morphological processing techniques. Astron. Astrophys. 457, 729 – 736. doi: 10.1051/0004-6361:20064852. CrossRefADSGoogle Scholar
  31. Menet, S., Saint-Marc, P., Medioni, G.: 1990, Active contour models: Overview, implementation and applications. In: IEEE International Conference on Systems, Man and Cybernetics, 1990. Conference Proceedings, 194–199. doi: 10.1109/ICSMC.1990.142091.
  32. Michalitsanos, A.G., Kupferman, P.: 1974, Spectrograph, filtergraph and magnetograph observations of the two-ribbon flare of 29 July, 1973. Solar Phys. 36, 403 – 416. doi: 10.1007/BF00151210. CrossRefADSGoogle Scholar
  33. Preminger, D.G., Walton, S.R., Chapman, G.A.: 2001, Solar feature identification using contrasts and contiguity. Solar Phys. 202, 53 – 62. CrossRefADSGoogle Scholar
  34. Qiu, J., Lee, J., Gary, D.E., Wang, H.: 2002, Motion of flare footpoint emission and inferred electric field in reconnecting current sheets. Astrophys. J. 565, 1335 – 1347. doi: 10.1086/324706. CrossRefADSGoogle Scholar
  35. Qu, M., Shih, F., Jing, J., Wang, H.: 2004, Automatic solar flare tracking using image-processing techniques. Solar Phys. 222, 137 – 149. doi: 10.1023/B:SOLA.0000036879.72274.68. CrossRefADSGoogle Scholar
  36. Qu, M., Shih, F.Y., Jing, J., Denker, C., Wang, H.: 2005, Automated detection and identification of solar filaments and sunspots. AGU Spring Meeting Abstracts, 6. Google Scholar
  37. Revathy, K., Lekshmi, S., Nayar, S.R.P.: 2005, Fractal-based fuzzy technique for detection of active regions from solar images. Solar Phys. 228, 43 – 53. doi: 10.1007/s11207-005-6880-7. CrossRefADSGoogle Scholar
  38. Saba, J.L.R., Gaeng, T., Tarbell, T.D.: 2006, Analysis of solar flare ribbon evolution: A semiautomated approach. Astrophys. J. 641, 1197 – 1209. doi: 10.1086/500631. CrossRefADSGoogle Scholar
  39. Scholl, I.F., Habbal, S.R.: 2008, Automatic detection and classification of coronal holes and filaments based on EUV and magnetogram observations of the solar disk. Solar Phys. 248, 425 – 439. doi: 10.1007/s11207-007-9075-6. CrossRefADSGoogle Scholar
  40. Shih, F.Y., Kowalski, A.J.: 2003, Automatic extraction of filaments in Hα solar images. Solar Phys. 218, 99 – 122. doi: 10.1023/B:SOLA.0000013052.34180.58. CrossRefADSGoogle Scholar
  41. Smith, D.F., Lilliequist, C.G.: 1979, Confinement of hot, hard X-ray producing electrons in solar flares. Astrophys. J. 232, 582 – 589. doi: 10.1086/157316. CrossRefADSGoogle Scholar
  42. Steinegger, M., Brandt, P.N., Schmidt, W., Pap, J.: 1990, Sunspot photometry and the total solar irradiance deficit measured in 1980 by ACRIM. Astrophys. Space Sci. 170, 127 – 133. CrossRefADSGoogle Scholar
  43. Stix, M.: 2004, The Sun, Springer, New York. ISBN 3540207414. zbMATHGoogle Scholar
  44. Sturrock, P.A.: 1966, Model of the high-energy phase of solar flares. Nature 211, 695 – 697. doi: 10.1038/211695a0. CrossRefADSGoogle Scholar
  45. Su, Y.N., Golub, L., van Ballegooijen, A.A., Huang, G.L.: 2006, A statistical study of shear motion of EUV footpoints in two-ribbon flares. In: Bothmer, V., Hady, A.A. (eds.) Solar Activity and its Magnetic Origin, IAU Symp. 233, Cambridge University Press, Cambridge, 409 – 410. doi: 10.1017/S1743921306002377. Google Scholar
  46. Svestka, Z.: 1976, Solar Flares, Springer, Berlin. Google Scholar
  47. Tiilikainen, N.P., Bartoli, A.E., Olsen, S.I.: 2008, Contour-based registration and retexturing of cartoon-like videos. In: Everingham, M., Needham, C.J., Fraile, R. (eds.) British Machine Vision Conference 2008, BMVA Press, Malvern. Google Scholar
  48. Unser, M.: 1995, Texture classification and segmentation using wavelet frames. IEEE Trans. Image Process. 4, 1549 – 1560. CrossRefADSGoogle Scholar
  49. Varma, M., Zisserman, A.: 2005, A statistical approach to texture classification from single images. Int. J. Comput. Vis. 62, 61 – 81. doi: 10.1007/s11263-005-4635-4. Google Scholar
  50. Wang, H., Qiu, J., Jing, J., Zhang, H.: 2003, Study of ribbon separation of a flare associated with a quiescent filament eruption. Astrophys. J. 593, 564 – 570. doi: 10.1086/376360. CrossRefADSGoogle Scholar
  51. Warren, H.P.: 2001, TRACE observations of flare ribbon evolution. AGU Spring Meeting Abstracts, 42. Google Scholar
  52. Warren, H.P., Warshall, A.D.: 2001, Ultraviolet flare ribbon brightenings and the onset of hard X-Ray emission. Astrophys. J. 560, 87 – 90. doi: 10.1086/324060. CrossRefADSGoogle Scholar
  53. Williams, D.J., Shah, M.: 1990, A fast algorithm for active contours. In: Third International Conference on Computer Vision, Proceedings, IEEE Computer Society Press, Washington, 592 – 595. CrossRefGoogle Scholar
  54. Xu, C., Prince, J.: 1998, Snakes, shapes, and gradient vector flow. IEEE Trans. Image Process. 7, 359 – 369. doi: 10.1109/83.661186. zbMATHCrossRefMathSciNetADSGoogle Scholar
  55. Xu, E.S., Wa, G., Tsuji, S.: 1994, Robust active contours with insensitive parameters. Pattern Recogn. 27, 879 – 884. CrossRefGoogle Scholar
  56. Zharkov, S., Zharkova, V.V., Ipson, S.S.: 2005, Statistical properties of sunspots in 1996 – 2004: I. Detection, north south asymmetry and area distribution. Solar Phys. 228, 377 – 397. doi: 10.1007/s11207-005-5005-7. CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.University of GlasgowGlasgowUK
  2. 2.University of StrathclydeGlasgowUK

Personalised recommendations