Advertisement

Solar Physics

, Volume 262, Issue 2, pp 481–494 | Cite as

Tracking of Coronal White-Light Events by Texture

  • N. Goussies
  • G. StenborgEmail author
  • A. Vourlidas
  • R. Howard
Solar Image Processing and Analysis

Abstract

The extraction of the kinematic properties of coronal mass ejections (CMEs) from white-light coronagraph images involves a significant degree of user interaction: defining the edge of the event, separating the core from the front or from nearby unrelated structures, etc. To contribute towards a less subjective and more quantitative definition, and therefore better kinematic characterization of such events, we have developed a novel image-processing technique based on the concept of “texture of the event”. The texture is defined by the so-called gray-level co-occurrence matrix, and the technique consists of a supervised segmentation algorithm to isolate a particular region of interest based upon its similarity with a pre-specified model. Once the event is visually defined early in its evolution, it is possible to automatically track the event by applying the segmentation algorithm to the corresponding time series of coronagraph images. In this paper we describe the technique, present some examples, and show how the coronal background, the core of the event, and even the associated shock (if one exists) can be identified for different kind of CMEs detected by the LASCO and SECCHI coronagraphs.

Keywords

CME Coronagraph Automatic tracking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boursier, Y., Llebaria, A., Goudail, F., Lamy, P., Robelus, S.: 2005, Automatic detection of coronal mass ejections on LASCO-C2 synoptic maps. In: Fineschi, S., Viereck, R.A. (eds.) Soc. of Photo – Optical Instr. Eng. (SPIE) Series, CS 5901, 13 – 24. doi: 10.1117/12.616011.
  2. Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The large angle spectroscopic coronagraph (LASCO). Solar Phys. 162, 357 – 402. doi: 10.1007/BF00733434. CrossRefADSGoogle Scholar
  3. Byrne, J.P., Gallagher, P.T., McAteer, R.T.J., Young, C.A.: 2009, The kinematics of coronal mass ejections using multiscale methods. Astron. Astrophys. 495, 325 – 334. doi: 10.1051/0004-6361:200809811. CrossRefADSGoogle Scholar
  4. Chan, T.F., Vese, L.A.: 2001, Active contours without edges. IEEE Trans. Image Process. 10(2), 266 – 277. zbMATHCrossRefADSGoogle Scholar
  5. Gonzalez, R.C., Woods, R.E.: 2002, Image Processing, 2nd edn. Addison-Wesley, Boston. ISBN 0-201-18075-8. Google Scholar
  6. Goussies, N., Mejail, M., Jacobo, J., Stenborg, G.: 2009, Detection and tracking of coronal mass ejections based on supervised segmentation and level sets. Pattern Recog. Lett. doi: 10.1016/j.patrec.2009.07.011 Google Scholar
  7. Haralick, R.M., Shanmugam, K., Dinstein, I.: 1973, Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC3, 610 – 621. CrossRefGoogle Scholar
  8. Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., Thompson, W.T., St Cyr, O.C., Mentzell, E., Mehalick, K., Lemen, J.R., Wuelser, J.P., Duncan, D.W., Tarbell, T.D., Wolfson, C.J., Moore, A., Harrison, R.A., Waltham, N.R., Lang, J., Davis, C.J., Eyles, C.J., Mapson-Menard, H., Simnett, G.M., Halain, J.P., Defise, J.M., Mazy, E., Rochus, P., Mercier, R., Ravet, M.F., Delmotte, F., Auchere, F., Delaboudiniere, J.P., Bothmer, V., Deutsch, W., Wang, D., Rich, N., Cooper, S., Stephens, V., Maahs, G., Baugh, R., McMullin, D., Carter, T.: 2008, Sun Earth connection coronal and heliospheric investigation (SECCHI). Space Sci. Rev. 136, 67 – 115. doi: 10.1007/s11214-008-9341-4. CrossRefADSGoogle Scholar
  9. Liewer, P.C., Dejong, E.M., Hall, J.R., Lorre, J.J.: 2005, Automatic CME detection from coronagraph image pairs. In: AGU Fall Meeting Abstracts, SH14A-01. Google Scholar
  10. Olmedo, O., Zhang, J., Wechsler, H., Poland, A., Borne, K.: 2008, Automatic detection and tracking of coronal mass ejections in coronagraph time series. Solar Phys. 248, 485 – 499. doi: 10.1007/s11207-007-9104-5. CrossRefADSGoogle Scholar
  11. Osher, S., Sethian, J.A.: 1988, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12 – 49. zbMATHCrossRefMathSciNetADSGoogle Scholar
  12. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: 1992, Numerical Recipes: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge. ISBN 0-521-43064-X. Google Scholar
  13. Qu, M., Shih, F.Y., Jing, J., Wang, H.: 2006, Automatic detection and classification of coronal mass ejections. Solar Phys. 237, 419 – 431. doi: 10.1007/s11207-006-0114-5. CrossRefADSGoogle Scholar
  14. Robbrecht, E., Berghmans, D.: 2004, Automated recognition of coronal mass ejections (CMEs) in near-real-time data. Astron. Astrophys. 425, 1097 – 1106. doi: 10.1051/0004-6361:20041302. CrossRefADSGoogle Scholar
  15. Robbrecht, E., Berghmans, D., Van der Linden, R.A.M.: 2009, Automated LASCO CME catalog for solar cycle 23: Are CMEs scale invariant? Astrophys. J. 691, 1222 – 1234. doi: 10.1088/0004-637X/691/2/1222. CrossRefADSGoogle Scholar
  16. Shi, J., Malik, J.: 2000, Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888 – 905. CrossRefGoogle Scholar
  17. Shi, Y., Karl, W.: 2005, Real-time tracking using level sets. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2, 34. Google Scholar
  18. Wagner, T.: 1999, Texture analysis. Handbook of Computer Vision and Applications 2, 276 – 308. ISBN 0-12-379772-1. Google Scholar
  19. Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O.C., Plunkett, S.P., Rich, N.B., Howard, R.A.: 2004, A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res. 109, 7105. doi: 10.1029/2003JA010282. CrossRefGoogle Scholar
  20. Zhu, S., Lee, T., Yuille, A.: 1995, Region competition: Unifying snakes, region growing, energy/bayes/mdl for multiband image segmentation. In: Proc. Fifth IEEE Int. Conf. Computer Vision (ICCV), 416 – 423. Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • N. Goussies
    • 1
    • 2
  • G. Stenborg
    • 3
    Email author
  • A. Vourlidas
    • 4
  • R. Howard
    • 4
  1. 1.Facultad de Cs. Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.George Mason UniversityFairfaxUSA
  3. 3.Interferometrics, Inc.HerndonUSA
  4. 4.U.S. Naval Research LaboratoryWashingtonUSA

Personalised recommendations