Skip to main content
Log in

The Apparent Layered Structure of the Heliospheric Current Sheet: Multi-Spacecraft Observations

  • STEREO Results at Solar Minimum
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Multiple current sheet crossings are ubiquitous features of the solar wind associated with high-beta plasma sheets, notably during the passage of the heliospheric current sheet (HCS). As the HCS is being convected past near-Earth, we attempt to resolve spatial scales and temporal variations of the apparent layered structure of the HCS, including adjacent large scale field reversals. We use several spacecraft for good spatial and cross-scale coverage, spanning 550 RE across and 900 RE along the Sun – Earth line: STEREO, ACE and Cluster. The multi-spacecraft magnetic and plasma observations within the leading edge of the sector boundary are consistent with i) a broad multi-layered structure; ii) occasional non-planar structures and Alfvénic fluctuations; iii) various stages of transient outflowing loops formed by interchange reconnection. By comparison of the observations at each spacecraft, we obtain a synthesis of the evolution between the patterns of loops, and hence of the transient outflow evolution along the sector boundary. In particular, we present circumstantial evidence that a heat flux dropout, traditionally signalling disconnection, can arise from interchange reconnection and scattering. Moreover, the inter-spacecraft comparison eliminates ambiguities between interpretations of electron counterstreaming. Overall, the sector boundary layer remains, locally, a steady structure as it is convected in the solar wind across a radial heliospheric distance of 560 – 580 RE. However, non-planar structures on the Cluster spatial scale, as well as the variations in angular changes and transition durations on the broader scale, indicate that we are not following the evolution of single loops but more likely a bunch of loops with variable properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acuña, M.H., Curtis, D., Scheifele, J.L., Russell, C.T., Schroeder, P., Szabo, A., et al.: 2008, The STEREO/IMPACT magnetic field experiment. Space Sci. Rev. 136, 203.

    Article  ADS  Google Scholar 

  • Balogh, A., Carr, C.M., Acuña, M.H., Dunlop, M.W., Beek, T.J., Brown, P., et al.: 2001, The cluster magnetic field investigation: overview of in-flight performance and initial results. Ann. Geophys. 19, 1207.

    ADS  Google Scholar 

  • Bame, S.J., Asbridge, J.R., Feldman, W.C., Gosling, J.T., Paschmann, G., Skopke, N.: 1980, Deceleration of the solar wind upstream from the Earth’s bow shock and the origin of diffuse upstream ions. J. Geophys. Res. 85, 2981.

    Article  ADS  Google Scholar 

  • Behannon, K.W., Neubauer, F.M., Barnstorf, H.: 1981, Fine-scale characteristics of interplanetary sector boundaries. J. Geophys. Res. 86, 3273.

    Article  ADS  Google Scholar 

  • Belcher, J.W., Davis, L., Jr.: 1971, Large-amplitude Alfvén waves in the interplanetary medium, 2. J. Geophys. Res. 76, 3534.

    Article  ADS  Google Scholar 

  • Blanco, J.J., Rodríguez-Pacheco, J., Hidalgo, M.A., Sequeiros, J.: 2006, Analysis of the heliospheric current sheet fine structure: single or multiple current sheets. J. Atmos. Solar-Terr. Phys. 68, 2173.

    Article  ADS  Google Scholar 

  • Bonifazi, C., Moreno, G., Lazarus, A.J., Sullivan, J.D.: 1980, Deceleration of the solar wind in the Earth’s foreshock region – ISEE 2 and IMP 8 observations. J. Geophys. Res. 85, 6031.

    Article  ADS  Google Scholar 

  • Borovsky, J.E.: 2008, Flux tube texture of the solar wind: strands of the magnetic carpet at 1 AU? J. Geophys. Res. 113, A08110.

    Article  Google Scholar 

  • Burlaga, L.F., Lemaire, J.F., Turner, J.M.: 1977, Interplanetary current sheets at 1 AU. J. Geophys. Res. 82, 3191.

    Article  ADS  Google Scholar 

  • Crooker, N.U., Pagel, C.: 2008, Residual strahls in solar wind electron dropouts: signatures of magnetic connection to the Sun, disconnection, or interchange reconnection? J. Geophys. Res. 113, A02106.

    Article  Google Scholar 

  • Crooker, N.U., Burton, M.E., Siscoe, G.L., Kahler, S.W., Gosling, J.T., Smith, E.J.: 1996, Solar wind streamer belt structure. J. Geophys. Res. 101, 24 331.

    ADS  Google Scholar 

  • Crooker, N.U., Larson, D.E., Kahler, S.W., Lamassa, S.M., Spence, H.E.: 2003, Suprathermal electron isotropy in high-beta solar wind and its role in heat flux dropouts. Geophys. Res. Lett. 30(12), 1619.

    Article  ADS  Google Scholar 

  • Crooker, N.U., Huang, C.-L., Lamassa, S.M., Larson, D.E., Kahler, S.W., Spence, H.E.: 2004a, Heliospheric plasma sheets. J. Geophys. Res. 109, A03107.

    Article  Google Scholar 

  • Crooker, N.U., Kahler, S.W., Larson, D.E., Lin, R.P.: 2004b, Large-scale magnetic field inversions at sector boundaries. J. Geophys. Res. 109, A03108.

    Article  Google Scholar 

  • Fairfield, D.H.: 1971, Average and unusual location of the Earth’s magnetopause and bow shock. J. Geophys. Res. 76, 6700.

    Article  ADS  Google Scholar 

  • Feldman, W.C., Asbridge, J.R., Bame, S.J., Montgomery, M.D.: 1973, Solar wind heat transport in the vicinity of the Earth’s bow shock. J. Geophys. Res. 78, 3697.

    Article  ADS  Google Scholar 

  • Feldman, W.C., Anderson, R.C., Asbridge, J.R., Bame, S.J., Gosling, J.T., Zwickl, R.D.: 1982, Plasma electron signature of magnetic connection to the Earth’s bow shock – ISEE 3. J. Geophys. Res. 87, 632.

    Article  ADS  Google Scholar 

  • Fisk, L.A., Schwadron, N.A., Zurbuchen, T.H.: 1998, On the slow solar wind. Space Sci. Rev. 86, 51.

    Article  ADS  Google Scholar 

  • Foullon, C., Owen, C.J., Dasso, S., Green, L.M., Dandouras, I., Elliott, H.A., et al.: 2007, Multi-spacecraft study of the 21 January 2005 ICME. Evidence of current sheet substructure near the periphery of a strongly expanding, fast magnetic cloud. Solar Phys. 244, 139.

    Article  ADS  Google Scholar 

  • Galvin, A.B., Kistler, L.M., Popecki, M.A., Farrugia, C.J., Simunac, K.D.C., Ellis, L., et al.: 2008, The plasma and suprathermal ion composition (PLASTIC) investigation on the STEREO observatories. Space Sci. Rev. 136, 437.

    Article  ADS  Google Scholar 

  • Gosling, J.T., McComas, D.J.: 1987, Field line draping about fast coronal mass ejecta – A source of strong out-of-the-ecliptic interplanetary magnetic fields. Geophys. Res. Lett. 14, 355.

    Article  ADS  Google Scholar 

  • Gosling, J.T., Skoug, R.M., Feldman, W.C.: 2001, Solar wind electron halo depletions at 90deg  pitch angle. Geophys. Res. Lett. 28, 4155.

    Article  ADS  Google Scholar 

  • Gosling, J.T., Skoug, R.M., McComas, D.J., Smith, C.W.: 2005, Magnetic disconnection from the Sun: observations of a reconnection exhaust in the solar wind at the heliospheric current sheet. Geophys. Res. Lett. 32, L05105.

    Article  Google Scholar 

  • Gosling, J.T., McComas, D.J., Skoug, R.M., Smith, C.W.: 2006, Magnetic reconnection at the heliospheric current sheet and the formation of closed magnetic field lines in the solar wind. Geophys. Res. Lett. 33, L17102.

    Article  ADS  Google Scholar 

  • Hollweg, J.V.: 1982, Surface waves on solar wind tangential discontinuities. J. Geophys. Res. 87, 8065.

    Article  ADS  Google Scholar 

  • Johnstone, A.D., Alsop, C., Burge, S., Carter, P.J., Coates, A.J., Coker, A.J., et al.: 1997, Peace: a plasma electron and current experiment. Space Sci. Rev. 79, 351.

    Article  ADS  Google Scholar 

  • Kahler, S., Lin, R.P.: 1994, The determination of interplanetary magnetic field polarities around sector boundaries using E greater than 2 keV electrons. Geophys. Res. Lett. 21, 1575.

    Article  ADS  Google Scholar 

  • Klein, L., Burlaga, L.F.: 1980, Interplanetary sector boundaries 1971 – 1973. J. Geophys. Res. 85, 2269.

    Article  ADS  Google Scholar 

  • Knetter, T., Neubauer, F.M., Horbury, T., Balogh, A.: 2004, Four-point discontinuity observations using Cluster magnetic field data: a statistical survey. J. Geophys. Res. 109, A06102.

    Article  Google Scholar 

  • Lavraud, B., Gosling, J.T., Rouillard, A., Fedorov, A., Opitz, A., Sauvaud, J.-A., et al.: 2009, Observation of a complex solar wind reconnection exhaust from spacecraft separated by over 1800 RE. Solar Phys. 256, 379.

    Article  ADS  Google Scholar 

  • Lepping, R.P., Wu, C.-C., McClernan, K.: 2003, Two-dimensional curvature of large angle interplanetary MHD discontinuity surfaces: IMP-8 and WIND observations. J. Geophys. Res. 108, 1279.

    Article  Google Scholar 

  • Lepping, R.P., Szabo, A., Peredo, M., Hoeksema, J.T.: 1996, Large-scale properties and solar connection of the heliospheric current and plasma sheets: WIND observations. Geophys. Res. Lett. 23, 1199.

    Article  ADS  Google Scholar 

  • Luhmann, J.G., Curtis, D.W., Schroeder, P., McCauley, J., Lin, R.P., Larson, D.E., et al.: 2008, STEREO IMPACT investigation goals, measurements, and data products overview. Space Sci. Rev. 136, 117.

    Article  ADS  Google Scholar 

  • McComas, D.J., Gosling, J.T., Phillips, J.L., Bame, S.J., Luhmann, J.G., Smith, E.J.: 1989, Electron heat flux dropouts in the solar wind – Evidence for interplanetary magnetic field reconnection? J. Geophys. Res. 94, 6907.

    Article  ADS  Google Scholar 

  • McComas, D.J., Bame, S.J., Barker, P., Feldman, W.C., Phillips, J.L., Riley, P., et al.: 1998, Solar wind electron proton alpha monitor (SWEPAM) for the advanced composition explorer. Space Sci. Rev. 86, 563.

    Article  ADS  Google Scholar 

  • Moldwin, M.B., Phillips, J.L., Gosling, J.T., Scime, E.E., McComas, D.J., Bame, S.J., et al.: 1995, Ulysses observation of a noncoronal mass ejection flux rope: evidence of interplanetary magnetic reconnection. J. Geophys. Res. 100, 19 903.

    ADS  Google Scholar 

  • Nakagawa, T.: 1993, Solar source of the interplanetary planar magnetic structures. Solar Phys. 147, 169.

    Article  ADS  Google Scholar 

  • Nash, A.G., Sheeley, N.R., Jr., Wang, Y.-M.: 1988, Mechanisms for the rigid rotation of coronal holes. Solar Phys. 117, 359.

    Article  ADS  Google Scholar 

  • Neugebauer, M.: 1985, Alignment of velocity and field changes across tangential discontinuities in the solar wind. J. Geophys. Res. 90, 6627.

    Article  ADS  Google Scholar 

  • Neugebauer, M.: 2008, Heliospheric sector boundaries: single or multiple? J. Geophys. Res. 113, A12106.

    Article  ADS  Google Scholar 

  • Neugebauer, M., Alexander, C.J., Schwenn, R., Richter, A.K.: 1986, Tangential discontinuities in the solar wind – Correlated field and velocity changes and the Kelvin – Helmholtz instability. J. Geophys. Res. 91, 13 694.

    Article  ADS  Google Scholar 

  • Ogilvie, K.W., Scudder, J.D., Sugiura, M.: 1971, Electron energy flux in the solar wind. J. Geophys. Res. 76, 8165.

    Article  ADS  Google Scholar 

  • Owens, M.J., Crooker, N.U.: 2007, Reconciling the electron counterstreaming and dropout occurrence rates with the heliospheric flux budget. J. Geophys. Res. 112, A06106.

    Article  Google Scholar 

  • Pilipp, W.G., Muehlhaeuser, K.-H., Miggenrieder, H., Montgomery, M.D., Rosenbauer, H.: 1987, Characteristics of electron velocity distribution functions in the solar wind derived from the HELIOS plasma experiment. J. Geophys. Res. 92, 1075.

    Article  ADS  Google Scholar 

  • Rème, H., Aoustin, C., Bosqued, J.M., Dandouras, I., Lavraud, B., Sauvaud, J.A., et al.: 2001, First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical Cluster ion spectrometry (CIS) experiment. Ann. Geophys. 19, 1303.

    Article  ADS  Google Scholar 

  • Roberts, D.A., Klein, L.W., Goldstein, M.L., Matthaeus, W.H.: 1987, The nature and evolution of magnetohydrodynamic fluctuations in the solar wind – Voyager observations. J. Geophys. Res. 92, 11 021.

    ADS  Google Scholar 

  • Roelof, E.C., Sibeck, D.G.: 1993, Magnetopause shape as a bivariate function of interplanetary magnetic field B z and solar wind dynamic pressure. J. Geophys. Res. 98, 21 421.

    Article  ADS  Google Scholar 

  • Rosenbauer, H., Schwenn, R., Marsch, E., Meyer, B., Miggenrieder, H., Montgomery, M.D., et al.: 1977, A survey on initial results of the HELIOS plasma experiment. J. Geophys. – Z. Geophys. 42, 561.

    Google Scholar 

  • Rouillard, A.P., Savani, N., Davies, J.A., Lavraud, B., Forsyth, R.J., Morley, S.K., et al.: 2009, A multispacecraft analysis of a small scale transient entrained by solar wind streams. Solar Phys. 256, 307.

    Article  ADS  Google Scholar 

  • Russell, C.T., Mellott, M.M., Smith, E.J., King, J.H.: 1983, Multiple spacecraft observations of interplanetary shocks: four spacecraft determination of shock normals. J. Geophys. Res. 88, 4739.

    Article  ADS  Google Scholar 

  • Sauvaud, J.-A., Larson, D., Aoustin, C., Curtis, D., Médale, J.-L., Fedorov, A., et al.: 2008, The IMPACT solar wind electron analyzer (SWEA). Space Sci. Rev. 136, 227.

    Article  ADS  Google Scholar 

  • Smith, C.W., L’Heureux, J., Ness, N.F., Acuña, M.H., Burlaga, L.F., Scheifele, J.: 1998, The ACE magnetic fields experiment. Space Sci. Rev. 86, 613.

    Article  ADS  Google Scholar 

  • Smith, E.J.: 2001, The heliospheric current sheet. J. Geophys. Res. 106, 15819.

    Article  ADS  Google Scholar 

  • Sonnerup, B.U.Ö., Scheible, M.: 1998, Minimum and maximum variance analysis. In: Pashmann, G., Daly, P.W. (eds.) Analysis Methods for Multi-Spacecraft Data, ISSI Scientific Report SR-001, Bern, Chap. 8, 185.

  • Stansberry, J.A., Gosling, J.T., Thomsen, M.F., Bame, S.J., Smith, E.J.: 1988, Interplanetary magnetic field orientations associated with bidirectional electron heat fluxes detected at ISEE 3. J. Geophys. Res. 93, 1975.

    Article  ADS  Google Scholar 

  • Suess, S.T., McComas, D.J., Bame, S.J., Goldstein, B.E.: 1995, Solar wind eddies and the heliospheric current sheet. J. Geophys. Res. 100, 12 261.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Ho, C.M., Smith, E.J., Neugebauer, M., Goldstein, B.E., Mok, J.S., et al.: 1994, The relationship between interplanetary discontinuities and Alfven waves: ULYSSES observations. Geophys. Res. Lett. 21, 2267.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Lakhina, G.S., Verkhoglyadova, O.P., Echer, E., Guarnieri, F.L.: 2007, Comment on “Comment on the abundances of rotational and tangential discontinuities in the solar wind” by M. Neugebauer. J. Geophys. Res. 112, A03101.

    Article  Google Scholar 

  • Villante, U., Bruno, R., Mariani, F., Burlaga, L.F., Ness, N.F.: 1979, The shape and location of the sector boundary surface in the inner solar system. J. Geophys. Res. 84, 6641.

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Nash, A.G., Sheeley, N.R., Jr.: 1989, Magnetic flux transport on the Sun. Science 245, 712.

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R., Socker, D.G., Howard, R.A., Rich, N.B.: 2000, The dynamical nature of coronal streamers. J. Geophys. Res. 105, 25 133.

    ADS  Google Scholar 

  • Wimmer-Schweingruber, R.F., Crooker, N.U., Balogh, A., Bothmer, V., Forsyth, R.J., Gazis, P., et al.: 2006, Understanding interplanetary coronal mass ejection signatures. Report of Working Group B. Space Sci. Rev. 123, 177.

    Article  ADS  Google Scholar 

  • Winterhalter, D., Smith, E.J., Burton, M.E., Murphy, N., McComas, D.J.: 1994, The heliospheric plasma sheet. J. Geophys. Res. 99, 6667.

    Article  ADS  Google Scholar 

  • Zurbuchen, T.H., Hefti, S., Fisk, L.A., Gloeckler, G., Schwadron, N.A., Smith, C.W., et al.: 2001, On the origin of microscale magnetic holes in the solar wind. J. Geophys. Res. 106, 16 001.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Foullon.

Additional information

STEREO Results at Solar Minimum

Guest Editors: Eric R. Christian, Michael L. Kaiser, Therese A. Kucera, O.C. St. Cyr

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foullon, C., Lavraud, B., Wardle, N.C. et al. The Apparent Layered Structure of the Heliospheric Current Sheet: Multi-Spacecraft Observations. Sol Phys 259, 389–416 (2009). https://doi.org/10.1007/s11207-009-9452-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-009-9452-4

Keywords

Navigation