Solar Physics

, Volume 262, Issue 2, pp 299–313 | Cite as

Increasing Lifetime of Recurrent Sunspot Groups Within the Greenwich Photoheliographic Results

  • R. HenwoodEmail author
  • S. C. Chapman
  • D. M. Willis
Solar Image Processing and Analysis


Long-lived (>20 days) sunspot groups extracted from the Greenwich Photoheliographic Results (GPR) are examined for evidence of decadal change. The problem of identifying sunspot groups that are observed on consecutive solar rotations (recurrent sunspot groups) is tackled by first constructing manually an example dataset of recurrent sunspot groups and then using machine learning to generalise this subset to the whole GPR. The resulting dataset of recurrent sunspot groups is verified against previous work by A. Maunder and other Royal Greenwich Observatory (RGO) compilers. Recurrent groups are found to exhibit a slightly larger value for the Gnevyshev – Waldmeier Relationship than the value found by Petrovay and van Driel-Gesztelyi (Solar Phys. 51, 25, 1977), who used recurrence data from the Debrecen Photoheliographic Results. Evidence for sunspot-group lifetime change over the previous century is observed within recurrent groups. A lifetime increase of a factor of 1.4 between 1915 and 1940 is found, which closely agrees with results from Blanter et al. (Solar Phys. 237, 329, 2006). Furthermore, this increase is found to exist over a longer period (1915 to 1950) than previously thought and provisional evidence is found for a decline between 1950 and 1965. Possible applications of machine-learning procedures to the analysis of historical sunspot observations, the determination of the magnetic topology of the solar corona and the incidence of severe space–weather events are outlined briefly.


Sunspots Neural networks Long-term change Non-linear Lifetime Greenwich Sunspot nests Sunspot nestlet 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balmaceda, L., Krivova, N.A., Solanki, S.K.: 2007, Adv. Space Res. 40(7), 986. CrossRefADSGoogle Scholar
  2. Balthasar, H., Vázquez, M., Wöhl, H.: 1986, Astron. Astrophys. 155, 87. ADSGoogle Scholar
  3. Becker, U.: 1955, Z. Astrophys. 37, 47. ADSGoogle Scholar
  4. Blanter, E.M., Le Mouël, J.-L., Perrier, F., Shnirman, M.G.: 2006, Solar Phys. 237, 329. ADSGoogle Scholar
  5. Calvo, R.A., Ceccato, H.A., Piacentini, R.D.: 1995, Astrophys. J. 444, 916. CrossRefADSGoogle Scholar
  6. Castenmiller, M.J.M., Zwaan, C., van der Zalm, E.B.J.: 1986, Solar Phys. 105, 237. ADSGoogle Scholar
  7. Dezső, L., Gerlei, O., Kovács, Á.: 1987, Debrecen Photoheliographic Results for the Year 1977, Heliogr. Series 1, Publ. Debrecen Obs., Debrecen. Google Scholar
  8. Dezső, L., Gerlei, O., Kovács, Á.: 1997, Debrecen Photoheliographic Results for the Year 1978, Heliogr. Series 2, Publ. Debrecen Obs., Debrecen. Google Scholar
  9. Fawcett, T.: 2004, Technical Report, HP Laboratories, Palo Alto. Google Scholar
  10. Fligge, M., Solanki, S.K.: 1997, Solar Phys. 173, 427. ADSGoogle Scholar
  11. Friis-Christensen, E., Svensmark, H.: 1997, Adv. Space Res. 20, 913. CrossRefADSGoogle Scholar
  12. Galkin, I.A., Reinisch, B.W., Ososkov, G.A., Zaznobina, E.G., Neshyba, S.P.: 1996, Radio Sci. 31, 1119. CrossRefADSGoogle Scholar
  13. Garcia, A., Mouradian, Z.: 1998, Solar Phys. 180, 495. ADSGoogle Scholar
  14. Gleisner, H., Lundstedt, H., Wintoft, P.: 1996, Ann. Geophys. 14, 679. CrossRefADSGoogle Scholar
  15. Gleissberg, W.: 1967, Solar Phys. 2, 231. ADSGoogle Scholar
  16. Gnevyshev, M.N.: 1938, Izv. Gl. Astron. Obs. Pulkove 16, 36. ADSGoogle Scholar
  17. Haigh, J.D., Lockwood, M., Giampapa, M.S., Rüedi, I., Güdel, M., Schmutz, W.: 2005, The Sun, Solar Analogs and the Climate, Springer, Berlin. Google Scholar
  18. Henwood, R.: 2008, Master’s Thesis, Centre for Fusion, Space and Astrophysics, Univ. Warwick. Google Scholar
  19. Howell, E.S., Merényi, E., Lebofsky, L.A.: 1994, J. Geophys. Res. 99, 10847. CrossRefADSGoogle Scholar
  20. Hoyt, D.V., Schatten, K.H., Nesmes-Ribes, E.: 1994, Geophys. Res. Lett. 21, 2067. CrossRefADSGoogle Scholar
  21. Kohavi, R.: 1995, In: Proceedings of the Fourteenth International Joint Conferences on Artificial Intelligence, 2, Morgan Kaufmann, Montreal, 1137. Google Scholar
  22. Kohavi, R., Provost, F.: 1998, Mach. Learn. 30(2/3), 271. (Editorial for the Special Issue on Applications of Machine Learning and the Knowledge Discovery Process.) CrossRefGoogle Scholar
  23. Kopecký, M.: 1985, Bull. Astron. Inst. Czech. 36, 359. ADSGoogle Scholar
  24. Lawrence, S., Burns, I., Back, A.D., Tsoi, A.C., Giles, C.L.: 1998, In: Neural Networks: Tricks of the Trade, Springer, London, 299. CrossRefGoogle Scholar
  25. Lean, J., Beer, J., Bradley, R.: 1995, Geophys. Res. Lett. 22, 3195. CrossRefADSGoogle Scholar
  26. Lundstedt, H.: 1992, Planet. Space Sci. 40, 457. CrossRefADSGoogle Scholar
  27. Lundstedt, H., Wintoft, P.: 1994, Ann. Geophys. 12, 19. CrossRefADSGoogle Scholar
  28. Meeus, J.H.: 1991, Astronomical Algorithms, Willmann-Bell, Richmond. Google Scholar
  29. Moore, A.W.: 2001, Cross-validation for detecting and preventing overfitting.
  30. Nguyen, T.T., Willis, C.P., Paddon, D.J., Nguyen, S.H., Nguyen, H.S.: 2006, Fundam. Inf. 72(1–3), 295. zbMATHMathSciNetGoogle Scholar
  31. Petrovay, K., van Driel-Gesztelyi, L.: 1997, Solar Phys. 176, 249. ADSGoogle Scholar
  32. Pierce, A.K., Slaughter, C.D.: 1977, Solar Phys. 51, 25. ADSGoogle Scholar
  33. Provost, F.: 2000, Machine learning from imbalanced data sets 101 (Extended Abstract), Association for the Advancement of Artificial Intelligence Workshop on Imbalanced Data Sets, Austin, Texas. Google Scholar
  34. Rouillard, A.P., Lockwood, M., Finch, I.: 2007, J. Geophys. Res. 112, A5103. doi: 10.1029/2006JA012130. CrossRefGoogle Scholar
  35. Royal Greenwich Observatory: 1980, Royal Observatory Annals, Photoheliographic Results 1972 – 1976, Royal Greenwich Observatory, Herstmonceux. Google Scholar
  36. Schröter, E.H.: 1985, Solar Phys. 100, 141. ADSGoogle Scholar
  37. Solanki, S.K.: 2003, Astron. Astrophys. Rev. 11, 153. CrossRefADSGoogle Scholar
  38. Thompson, M.J., Toomre, J., Anderson, E.R., Antia, H.M., Berthomieu, G., Burtonclay, D., Chitre, S.M., Christensen-Dalsgaard, J., Corbard, T., Derosa, M., Genovese, C.R., Gough, D.O., Haber, D.A., Harvey, J.W., Hill, F., Howe, R., Korzennik, S.G., Kosovichev, A.G., Leibacher, J.W., Pijpers, F.P., Provost, J., Rhodes, E.J. Jr., Schou, J., Sekii, T., Stark, P.B., Wilson, P.R.: 1996, Science 272(5266), 1300. CrossRefADSGoogle Scholar
  39. Waldmeier, M.: 1955, Ergebnisse und Probleme der Sonnenforschung, Geest and Portig, Leipzig. Google Scholar
  40. Wang, Y.-M., Lean, J., Sheeley, N.R.: 2002, Astrophys. J. Lett. 577, L53. CrossRefADSGoogle Scholar
  41. Weigel, R.S., Horton, W., Tajima, T., Detman, T.: 1999, Geophys. Res. Lett. 26, 1353. CrossRefADSGoogle Scholar
  42. Williscroft, L.-A., Poole, A.W.V.: 1996, Geophys. Res. Lett. 23, 3659. CrossRefADSGoogle Scholar
  43. Wu, J.-G., Lundstedt, H.: 1996, Geophys. Res. Lett. 23, 319. CrossRefADSGoogle Scholar
  44. Zuccarello, F.: 1993, Astron. Astrophys. 272, 587. ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Centre for Fusion, Space and AstrophysicsUniversity of WarwickCoventryUK
  2. 2.UK Solar System Data CentreRutherford Appleton LaboratoryChilton, DidcotUK
  3. 3.Space Science and Technology DepartmentRutherford Appleton LaboratoryChilton, DidcotUK

Personalised recommendations