Skip to main content
Log in

The Butterfly Diagram in the Eighteenth Century

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Digitized images of the drawings by J.C. Staudacher were used to determine sunspot positions for the period 1749 – 1796. From the entire set of drawings, 6285 sunspot positions were obtained for a total of 999 days. Various methods have been applied to find the orientation of the solar disk, which is not given for the vast majority of the drawings by Staudacher. Heliographic latitudes and longitudes in the Carrington rotation frame were determined. The resulting butterfly diagram shows a highly-populated Equator during the first two cycles (cycles 0 and 1 in the usual counting since 1749). An intermediate period is cycle 2, whereas cycles 3 and 4 show a typical butterfly shape. A tentative explanation may be the transient dominance of a quadrupolar magnetic field during the first two cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arlt, R.: 2008, Digitization of sunspot drawings by Staudacher in 1749 – 1796. Solar Phys. 247, 399 – 410 (Paper I).

    Article  ADS  Google Scholar 

  • Balthasar, H., Vazquez, M., Wöhl, H.: 1986, Differential rotation of sunspot groups in the period from 1874 through 1976 and changes of the rotation velocity within the solar cycle. Astron. Astrophys. 155, 87 – 98.

    ADS  Google Scholar 

  • Brandenburg, A., Spiegel, E.: 2008, Modeling a Maunder minimum. Astron. Nachr. 329, 351 – 357.

    Article  ADS  Google Scholar 

  • Bushby, P.J.: 2006, Zonal flows and grand minima in a solar dynamo model. Mon. Not. Roy. Astron. Soc. 371, 772 – 780.

    Article  ADS  Google Scholar 

  • Dikpati, M., Charbonneau, P.: 1999, A Babcock – Leighton flux transport dynamo with solar-like differential rotation. Astrophys. J. 518, 508 – 520.

    Article  Google Scholar 

  • Dikpati, M., Gilman, P.A.: 2001, Flux-transport dynamos with α-effect from global instability of tachocline differential rotation: A solution for magnetic parity selection in the Sun. Astrophys. J. 559, 428 – 442.

    Article  ADS  Google Scholar 

  • Hathaway, D.H., Nandy, D., Wilson, R.M., Reichmann, E.J.: 2003, Evidence that a deep meridional flow sets the sunspot cycle period. Astrophys. J. 589, 665 – 670.

    Article  ADS  Google Scholar 

  • Howard, R.F.: 1996, Axial tilt angles of active regions. Solar Phys. 169, 293 – 301.

    ADS  Google Scholar 

  • Küker, M., Arlt, R., Rüdiger, G.: 1999, The Maunder minimum as due to magnetic Λ-quenching. Astron. Astrophys. 343, 977 – 982.

    Google Scholar 

  • Maunder, E.W.: 1904, Note on the distribution of sun-spots in heliographic latitude, 1874 – 1902. Mon. Not. Roy. Astron. Soc. 64, 747 – 761.

    ADS  Google Scholar 

  • Meeus, J.: 1985, Astronomical Formulae for Calculators, 3rd edn., Willmann-Bell, Richmond.

    Google Scholar 

  • Ribes, J.C., Nesme-Ribes, E.: 1993, The solar sunspot cycle in the Maunder minimum AD1645 to AD1715. Astron. Astrophys. 276, 549 – 563.

    ADS  Google Scholar 

  • Seidelmann, P.K., Abalakin, V.K., Bursa, M., Davies, M.E., de Bergh, C., Lieske, J.H., et al.: 2002, Report of the IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites: 2000. Cel. Mech. Dyn. Astron. 82, 83 – 111.

    Article  ADS  Google Scholar 

  • Tobias, S.M.: 1997, The solar cycle: parity interactions and amplitude modulation. Astron. Astrophys. 322, 1007 – 1017.

    Google Scholar 

  • Weiss, N.O., Tobias, S.M.: 2000, Physical causes of solar activity. Space Sci. Rev. 94, 99 – 112.

    Article  ADS  Google Scholar 

  • Wolf, R.: 1857, Mittheilungen üer die Sonnenflecken. Vierteljahressch. Naturforsch. Ges. Zürich 2, 272 – 299.

    Google Scholar 

  • Zolotova, N.V., Ponyavin, D.I.: 2007, Was the unusual solar cycle at the end of the XVIII century a result of phase asynchronization? Astron. Astrophys. 470, L17 – L20.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Arlt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arlt, R. The Butterfly Diagram in the Eighteenth Century. Sol Phys 255, 143–153 (2009). https://doi.org/10.1007/s11207-008-9306-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-008-9306-5

Keywords

Navigation