Skip to main content

Automatic Sunspots Detection on Full-Disk Solar Images using Mathematical Morphology


Sunspots are solar features located in active regions of the Sun, whose number is an indicator of the Sun’s magnetic activity. Therefore accurate detection and classification of sunspots are fundamental for the elaboration of solar activity indices such as the Wolf number. However, irregularities in the shape of the sunspots and their variable intensity and contrast with the surroundings, make their automated detection from digital images difficult. Here, we present a morphological tool that has allowed us to construct a simple and automatic procedure to treat digital photographs obtained from a solar telescope, and to extract the main features of sunspots. Comparing the solar indices computed with our algorithm against those obtained with the previous method exhibit an obvious improvement. A favorable comparison of the Wolf sunspot number time series obtained with our methodology and from other reference observatories is also presented. Finally, we compare our sunspot and group detection to that of other observatories.

This is a preview of subscription content, access via your institution.


  • Bartels, J.: 1934, Twenty-seven day recurrences in terrestrial magnetic and solar activity, 1923-33. Terr. Magn. Atmos. Electr. 39, 201 – 202.

    Article  Google Scholar 

  • Bratsolis, E., Sigelle, M.: 1998, Solar image segmentation by use of mean field fast annealing. Astron. Astrophys. 131, 371 – 375.

    ADS  Google Scholar 

  • Clette, F., Berghmans, D., Vanlommel, P., Van der Linden, R.A.M., Koeckelenbergh, A., Wauters, L.: 2007, From the Wolf number to the International Sunspot index: 25 years of SIDC. Adv. Space Res. 40, 919 – 928. doi:10.1016/j.asr.2006.12.045.

    Article  ADS  Google Scholar 

  • Cordeiro, M.: 2001, Algorithmic Patterns for Morphological Image Processing, Prentice-Hall, Englewood Cliffs.

    Google Scholar 

  • Dougherty, E.R.: 1992, An Introduction to Morphological Image Processing, SPIE Optical Engineering Press.

  • Fernandez Borda, R.A., Mininni, P.D., Mandini, C.H., Gómez, D., Bauer, O., Rovira, M.: 2002, Automatic solar flare detection using neural network techniques. Solar Phys. 206, 347 – 357.

    Article  ADS  Google Scholar 

  • González, R.C., Woods, R.E.: 2002, Digital Image Processing, Prentice-Hall, Englewood Cliffs.

    Google Scholar 

  • Green, R.M.: 1985, Spherical Astronomy, Cambridge University Press, Cambridge.

    Google Scholar 

  • Hargreaves, J.K.: 1992, The Solar-Terrestrial Environment, University Press.

  • Hubrecht, J.B.: 1913, Some problems of astronomy: X. The darkening of the Sun’s limb. The Observatory 36, 398 – 401.

    ADS  Google Scholar 

  • Lanzerotti, L.J.: 2001, Space weather effects on communications. In: Daglis, I.A. (ed.) Space Storms and Space Weather Hazards, Kluwer, Dordrecht, 313 – 334.

    Google Scholar 

  • Neckel, H.: 1994, Solar limb darkening 1986 – 1990, Hamburger Sternwarte, Germany.

  • Preminger, D.G., Walton, S.R., Chapman, G.A.: 2001, Solar Phys. 202, 53 – 62.

    Article  ADS  Google Scholar 

  • Qu, M., Shih, F.Y., Jing, J., Wang, H.M.: 2005, Automatic solar filament detection using image processing techniques. Solar Phys. 228, 119 – 135.

    Article  ADS  Google Scholar 

  • Serra, J.: 1982, Image Analysis and Mathematical Morphology, Academic, New York.

    MATH  Google Scholar 

  • Steinegger, M., Vazquez, M., Bonet, J.A., Brandt, P.N.: 1996, On the energy balance of solar active regions. Astrophys. J. 461, 478 – 498.

    Article  ADS  Google Scholar 

  • Turmon, M., Pap, J.M., Mukhtar, S.: 2002, Statistical pattern recognition for labelling solar active regions: Application to SOHO/MDI imagery. Astrophys. J. 568, 396 – 407.

    Article  ADS  Google Scholar 

  • Vanlommel, P., Cugnon, P., Van der Linden, R.A.M., Berghmans, D., Clette, F.: 2004, The SIDC: World data centre for the sunspot index. Solar Phys. 224, 113 – 120.

    Article  ADS  Google Scholar 

  • Waldmeier, M.: 1961, The Sunspot-Activity in the Years 1610 – 1960, Schultheiss Publisher, Zürich.

    Google Scholar 

  • Zharkov, S., Zharkova, V., Ipson, S.: 2005, Statistical properties of sunspots in 1996 – 2004: I. Detection, North – South asymmetry and area distribution. Solar Phys. 228, 377 – 397.

    Article  ADS  Google Scholar 

  • Zharkov, S., Zharkova, V., Ipson, S., Benkhalil, A.: 2005, Technique for automatic recognition of sunspots on full-disk solar images. EURASIP J. Appl. Signal Process. 15, 2573 – 2584.

    Article  Google Scholar 

  • Zharkova, V., Ipson, S., Zharkov, S., Benkhalil, A., Aboudarham, J., Bentley, R.: 2003, A full-disk image standardisation of the synoptic solar observations at the Meudon observatory. Solar Phys. 214, 89 – 105.

    Article  ADS  Google Scholar 

  • Zharkova, V., Ipson, S., Benkhalil, A., Zharkov, S.: 2005a, Feature recognition in solar images. Artif. Intell. Rev. 23, 209 – 266.

    Article  Google Scholar 

  • Zharkova, V., Aboudarham, J., Zharkov, S., Ipson, S., Benkhalil, A., Fuller, N.: 2005b, Solar feature catalogue in EGSO. Solar Phys. 228, 361 – 375.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to J. J. Curto.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Curto, J.J., Blanca, M. & Martínez, E. Automatic Sunspots Detection on Full-Disk Solar Images using Mathematical Morphology. Sol Phys 250, 411–429 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Sunspots
  • Automatic detection
  • Mathematical morphology