Solar Physics

, Volume 249, Issue 1, pp 135–145 | Cite as

Periodicity and Hemispheric Phase Relationship in High-Latitude Solar Activity

  • Qixiu LiEmail author


The counts of the monthly averaged polar faculae, from observations of the National Astronomical Observatory of Japan (NAOJ), are examined by using linear and nonlinear approaches to find the periodicity characteristics of the polar faculae in the northern and southern hemispheres and the phase relationship between them. Both the cross-wavelet transform (XWT) and wavelet coherence (WTC) indicate the prominent period with 95% confidence level, namely the Schwabe cycle of about 11 years. The Schwabe cycle is in phase in the two hemispheres. Within the 11-year frequency band, there is a small phase difference during the period of 1966 – 1975 when the activity of polar faculae in the northern hemisphere slightly leads the one in the southern hemisphere. A cross-recurrence plot analysis and the line of synchronization (LOS) extracted from the cross-recurrence plot show further the phase difference between the two hemispheres. The LOS deviates significantly from the main diagonal during the period of 1965 – 1970 and LOS >0, showing that the activity of polar faculae in the northern hemisphere leads in phase, which is in accordance with XWT and WTC analyses. Moreover, asynchronization is highest (about 30 months) during this period.


Sun: activity Sun: polar faculae Methods: data analysis Methods: nonlinear techniques 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Eckmann, J.-P., Kamphorst, S.O., Ruelle, D.: 1987, Europhys. Lett. 4, 973. CrossRefADSGoogle Scholar
  2. Grinsted, A., Moore, J.C., Jevrejeva, S.: 2004, Nonlinear Proc. Geophys. 11, 561. ADSGoogle Scholar
  3. Groth, A.: 2005, Phys. Rev. E 72(4), 046220. CrossRefADSGoogle Scholar
  4. Kantz, H., Schreiber, T.: 2004, Nonlinear Time Series Analysis, Cambridge University Press, Cambridge, 38. zbMATHGoogle Scholar
  5. Kiepenheuer, K.O.: 1953, In: Kuiper, G.P. (ed.) The Sun, University of Chicago Press, Chicago, 368. Google Scholar
  6. Li, Q.X., Li, K.J.: 2007, Publ. Astron. Soc. Japan 59, 983. ADSGoogle Scholar
  7. Li, K.J., Irie, M., Wang, J.X., Xiong, S.Y., Yun, H.S., Liang, H.F., Zhan, L.S., Zhao, H.J.: 2002a, Publ. Astron. Soc. Japan 54, 787. ADSGoogle Scholar
  8. Li, K.J., Wang, J.X., Xiong, S.Y., Liang, H.F., Yun, H.S., Gu, X.M.: 2002b, Astron. Astrophys. 383, 648. CrossRefADSGoogle Scholar
  9. Li, K.J., Qiu, J., Su, T.W., Irie, M., Gao, P.X.: 2004, Publ. Astron. Soc. Japan 56, L49. ADSGoogle Scholar
  10. Li, K.J., Liang, H.F., Gao, P.X., Su, T.W.: 2006, Solar Phys. 236, 185. CrossRefADSGoogle Scholar
  11. Liu, P.C.: 1994, In: Foufoula-Georgiou, E., Kumar, P. (eds.) Wavelets in Geophysics, Academic Press, San Diego, 151. Google Scholar
  12. Makarov, V.I., Makarova, V.V.: 1987, Soln. Dannye 3, 62. Google Scholar
  13. Makarov, V.I., Makarova, V.V.: 1996, Solar Phys. 163, 267. CrossRefADSGoogle Scholar
  14. Maraun, D., Kurths, J.: 2004, Nonlinear Proc. Geophys. 11, 505. ADSCrossRefGoogle Scholar
  15. Marwan, N., Kurths, J.: 2002, Phys. Lett. A 302, 299. zbMATHCrossRefADSMathSciNetGoogle Scholar
  16. Marwan, N., Kurths, J.: 2005, Phys. Lett. A 336, 349. zbMATHCrossRefADSGoogle Scholar
  17. Marwan, N., Thiel, M., Nowaczyk, N.R.: 2002, Nonlinear Proc. Geophys. 9, 325. ADSGoogle Scholar
  18. Marwan, N., Wessel, N., Meyerfeldt, U., Schirdewan, A., Kurths, J.: 2002, Phys. Rev. E 66(2), 026702. ADSGoogle Scholar
  19. Ponyavin, D.I., Zolotova, N.V.: 2004, In: Stepanov, A.V., Benevolenskaya, E.E., Kosovichev, A.G. (eds.) Multi-wavelength Investigations of Solar Activity, IAU Symp. 223, 141. Google Scholar
  20. Riehokainen, A., Urpo, S., Valtaoja, E., Makarov, V.I., Makarova, V.V., Tlatov, A.G.: 2001, Astron. Astrophys. 366, 676. CrossRefADSGoogle Scholar
  21. Saito, K., Tanaka, Y.: 1960, Publ. Astron. Soc. Japan 12, 556. ADSGoogle Scholar
  22. Sakurai, T.: 1998, In: Balasubramaniam, K.S., Harvey, J., Rabin, D. (eds.) Synoptic Solar Physics CS-140, Astron. Soc. Pac., San Francisko, 483. Google Scholar
  23. Sheeley, N.R. Jr.: 1964, Astrophys. J. 140, 731. CrossRefADSGoogle Scholar
  24. Sheeley, N.R. Jr.: 1991, Astrophys. J. 374, 386. CrossRefADSGoogle Scholar
  25. Takens, F.: 1981, In: Dold, A., Eckmann, B. (eds.) Dynamical Systems and Turbulence, Warwick 1980, Lecture Notes in Mathematics 898, Springer, Berlin, 366. CrossRefGoogle Scholar
  26. Torrence, C., Compo, G.P.: 1998, Bull. Am. Meteor. Soc. 79, 61. CrossRefGoogle Scholar
  27. Waldmeier, M.: 1965, Astron. Mitt. Sternw. Zürich 267, 1. Google Scholar
  28. Weber, F.: 1865a, Wochenschr. Astron. Met. Geogr. 8, 38. ADSGoogle Scholar
  29. Weber, F.: 1865b, Wochenschr. Astron. Met. Geogr. 8, 143. Google Scholar
  30. Zbilut, J.P., Giulian, A., Webber, C.L. Jr.: 1998, Phys. Lett. A 246, 122. CrossRefADSGoogle Scholar
  31. Zolotova, N.V., Ponyavin, D.I.: 2006, Astron. Astrophys. 449, L1. CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.National Astronomical Observatories/Yunnan ObservatoryCASKunmingPeople’s Republic of China
  2. 2.School of GraduatesCASBeijingPeople’s Republic of China

Personalised recommendations