Solar Physics

, Volume 226, Issue 2, pp 359–376 | Cite as

Independent Global Modes of Solar Magnetic Field Fluctuations

  • A. C. Cadavid
  • J. K. Lawrence
  • D. P. McDonald
  • A. Ruzmaikin
Article

Abstract

Observed solar, interplanetary and geomagnetic time series contain quasi periodicities on scales of 1–2.5 years. The further discovery of 1.3 year fluctuations in helioseismic observations suggests that a variety of signals may be related to the underlying dynamo in the Sun. We use independent component analysis to study the temporal and spatial variations of a few statistically independent global modes of the axisymmetric solar magnetic field over a period of 25 years. Five modes capture the salient properties of the data. Two modes describe the polar and high latitude fields, and present 1–1.5 year quasi periodicities. The other three modes correspond to low and mid-latitude phenomena and show both 1.3 and 1.7-year variations. By comparing the characteristic time scales, dates of occurrence and heliocentric latitudes of these modes, we connect them to their manifestations in heliospheric time series.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramenko, V.: 2004, Am. Astron. Soc. Meeting 204, 20.04.Google Scholar
  2. Antalová, A. and Gnevyshev, M. N.: 1983, Contrib. Astron. Obs. Skalnaté Pleso 11, 63.Google Scholar
  3. Benevolenskaya, E. E.: 1991, in I. Tuominen, D. Moss, and G. Rüdiger (eds.), The Sun and Cool Stars: Activity, Magnetism, Dynamos, Springer-Verlag, Berlin, p. 234.Google Scholar
  4. Benevolenskaya, E. E.: 1995, Solar Phys. 161, 1.Google Scholar
  5. Benevolenskaya, E. E.: 1996, Solar Phys. 167, 47.Google Scholar
  6. Benevolenskaya, E. E.: 1998, Astrophys. J. 509, L49.Google Scholar
  7. Benevolenskaya, E. E.: 2003, Solar Phys. 216, 325.Google Scholar
  8. Benevolenskaya, E. E., Kosovichev, A. G., Lemen, J. R., Scherrer, P. H., and Slater, G. L.: 2002, Astrophys. J. 571, L181.Google Scholar
  9. Cichocki, A., Karhunen, J., Kasprzak, W., and Vigario, R.: 1999, Neurocomputing 24, 55.Google Scholar
  10. Covas, E., Tavakol, R., and Moss, D.: 2000, Astron. Astrophys. 363, L13.Google Scholar
  11. Elsner, J. B. and Tsonis, A. A.: 1996, Singular Spectrum Analysis, Plenum Press, New York.Google Scholar
  12. Feminella, F. and Storini, M.: 1997, Astron. Astrophys. 322, 311.Google Scholar
  13. Funaro, M., Oja, E., and Valpola, H.: 2003, Neural Netw. 16, 469.PubMedGoogle Scholar
  14. Gazis, P. R.: 1996, J. Geophys. Res. 101, 415.Google Scholar
  15. Gazis, P. R., Richardson, J. D., and Paularena, K. A.: 1995, Geophys. Res. Lett. 22, 1165.Google Scholar
  16. Gnevyshev, M. N.: 1967, Solar Phys. 1, 107.Google Scholar
  17. Gnevyshev, M. N.: 1977, Solar Phys. 51, 175.Google Scholar
  18. Hagenaar, H. J., Schrijver, C. J., and Title, A. M.: 2003, Astrophys. J. 584, 1107.Google Scholar
  19. Howe, R. et al.: 2000, Science 287, 2456.PubMedGoogle Scholar
  20. Hyvärinen, A., Karhunen, J., and Oja, E.: 2001, Independent Component Analysis, John Wiley, New York.Google Scholar
  21. Jackson, J. E.: 1991, A User’s Guide to Principal Components, John Wiley, New York.Google Scholar
  22. Karhunen, J., Cichocki, A., Kasprzak, W., and Pajunen, P.: 1997, Int. J. Neural Syst. 8, 219.PubMedGoogle Scholar
  23. Krivova, N. A. and Solanki, S. K.: 2002, Astron. Astrophys. 394, 701.Google Scholar
  24. Kudela, K., Rybák, J., Antalová, A., and Storini, M.: 2002, Solar Phys. 205, 165.Google Scholar
  25. Lawrence, J. K., Cadavid, A. C., and Ruzmaikin, A.: 1996, Astrophys. J. 465, 425.Google Scholar
  26. Lawrence, J. K., Cadavid, A. C., and Ruzmaikin, A.: 2004, Solar Phys. 225, in press.Google Scholar
  27. Maino, D., Farusi, A., Baccigalupi, C., Perrota, F., Banday, A. J., Bedini, L., Burigana, C., De Zotti, G., Gorski, K. M., and Salerno, E.: 2002, Monthly Notices Royal Astron. Soc. 334, 53.Google Scholar
  28. McIntosh, P., Thompson, R., and Willock, E.: 1992, Nature 360, 322.Google Scholar
  29. Mursula, K. and Vilppola, J. H.: 2004, Solar Phys. 221, 337.Google Scholar
  30. Mursula, K., Zieger, B., and Vilppola, J. H.: 2003, Solar Phys. 212, 201.Google Scholar
  31. Richardson, J. D., Paularena, K. I., Belcher, J. W., and Lazarus, A. J.: 1994, Geophys. Res. Lett. 21, 1559.Google Scholar
  32. Rybák, J., Antalová, A., and Storini, M.: 2001, Space Sci. Rev. 97, 359.Google Scholar
  33. Toomre, J., Christensen-Dalsgaard, J., Hill, F., Howe, R., Komm, R., Schou, J., and Thompson, M. J.: 2003, in H. Sawaya-Lacoste (ed.), Proceedings of SOHO 12/GONG+ 2002 on Local and Global Helioseismology: The Present and Future, ESA SP-517, ESA Publications Division, Noordwijk, Netherlands.Google Scholar
  34. Torrence, C. and Compo, G. P.: 1998, Bull. Amer. Met. Soc., 79, 61 (http://paos.colorado.edu/ research/wavelets).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • A. C. Cadavid
    • 1
  • J. K. Lawrence
    • 1
  • D. P. McDonald
    • 1
  • A. Ruzmaikin
    • 2
  1. 1.Department of Physics and AstronomyCalifornia State UniversityNorthridgeU.S.A.
  2. 2.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaU.S.A.

Personalised recommendations