Which One is the ‘GNEVYSHEV’ GAP?

Abstract

Gnevyshev [Solar Phys. 1, 107, 1967] showed that in solar cycle 19 (1954 –1965), the coronal line half-yearly average intensity at 5303 Å (green line) had actually two maxima, the first one in 1957 and the second in 1959–1960. In the present communication, the structures at solar maxima were reexamined in detail. It was noted that the two-peak structure of solar indices near sunspot (Rz) maxima was only a crude approximation. On a finer time scale (monthly values), there were generally more than three peaks, with irregular peak separations in a wide range of ∼12± 6 months. The sequences were seen simultaneously (within a month or two) at many solar indices (notably the 2800 MHz radio flux) at and above the photosphere, and these can be legitimately termed ‘Gnevyshev peaks’ and ‘Gnevyshev gaps’. The open magnetic flux emanating from the Sun showed this sequence partially, some peaks matching, others not. In interplanetary space, the interplanetary parameters N (number density), V (solar wind speed), B (magnetic field) showed short-time peak structures but mostly not matching with the Rz peaks. Geomagnetic indices (aa, Dst) had peaked structures, which did not match with Rz peaks but were very well related to V and B, particularly to the product VB. The cosmic ray (CR) modulation also showed peaks and troughs near sunspot maximum, but the matching with Rz peaks was poor. Hence, none of these can be termed Gnevyshev peaks and gaps, particularly the gap between aa peaks, one near sunspot maximum and another in the declining phase, as this gap is qualitatively different from the Gnevyshev gap in solar indices.

This is a preview of subscription content, access via your institution.

References

  1. Ahluwalia, H. S.: 2000, J. Geophys. Res. 105, 27481.

    Article  ADS  Google Scholar 

  2. Akasofu, S. I.: 1981, Space Sci. Review 28, 121.

    ADS  Google Scholar 

  3. Antalová, H. and Gnevyshev, M. N.: 1965, Astron. Zhurn. 42, 253.

    ADS  Google Scholar 

  4. Antalová, H. and Gnevyshev, M. N.: 1983, Contrib. Astron. Obs. Skalnaté Pleso 11, 63.

    ADS  Google Scholar 

  5. Ataç, T. and Özgüç, A.: 2001, Solar Phys. 198, 399.

    ADS  Google Scholar 

  6. Benevolenskaya, E. E.: 2003, Solar Phys. 216, 325.

    Article  ADS  Google Scholar 

  7. Benevolenskaya, E. E., Kosovichev, A. G., and Scherrer, P. H.: 2001, Astrophys. J. 554, L107.

    Article  ADS  Google Scholar 

  8. Benevolenskaya, E. E., Kosovichev, A. G., Lemen, J. R., Scherrer, P. H., and Slater, G. L.: 2002, Astrophys. J. 571, L181.

    Article  ADS  Google Scholar 

  9. Cane, H. V., Richardson, I. G., and von Rosenvinge, T. T.: 1996, J. Geophys. Res. 101, 21561.

    ADS  Google Scholar 

  10. Crooker, N. U. and Gringauz, K. I.: 1993, J. Geophys. Res. 98, 59.

    ADS  Google Scholar 

  11. Dorman, L. I.: 2001, Adv. Space Res. 27(3), 601.

    ADS  Google Scholar 

  12. Dorman, L. I., Iucii, N., and Villoresi, G.: 2001, Adv. Space Res. 27(3), 595.

    ADS  Google Scholar 

  13. Dorman, L. I., Dorman, I. V., Iucii, N., Parisi, M., and Villoresi, G.: 2001, Adv. Space Res. 27(3), 589.

    ADS  Google Scholar 

  14. Echer, E., Gonzalez, W. D., Gonzalez, A. L. C., et al.: 2004, J. Atmos. Solar-Terr. Phys. 66, 1019.

    ADS  Google Scholar 

  15. Feminella, F. and Storini, M.: 1997, Astron. Astrophys. 322, 311.

    ADS  Google Scholar 

  16. Gnevyshev, M. N.: 1967, Solar Phys. 1, 107.

    Article  ADS  Google Scholar 

  17. Gnevyshev, M. N.: 1977, Solar Phys. 51, 175.

    Article  ADS  Google Scholar 

  18. Gonzalez, W. D., Gonzalez, A. L. C., and Tsurutani, B. T.: 1990, Planet. Space Sci. 38, 181.

    ADS  Google Scholar 

  19. Harvey, K. L. and Recely, F.: 2002, Solar Phys. 211, 31.

    Article  ADS  Google Scholar 

  20. Jokipii, J. R. and Thomas, B.: 1981, Astrophys. J. 243, 1115.

    Article  ADS  Google Scholar 

  21. Kane, R. P.: 1997, Ann. Geophysicae 15, 1581.

    ADS  Google Scholar 

  22. Kane, R. P.: 2002, Ann. Geophysicae 20, 741.

    ADS  Google Scholar 

  23. Kane, R. P.: 2003, J. Geophys. Res. 108, A1, 1046, doi: 10.1029/2002JA009542.

  24. Kane, R. P.: 2005, J. Atmos. Solar-Terr. Phys. 67, 429.

    ADS  Google Scholar 

  25. Li, J. K. and Gu, M. X.: 2000, Astron. Astrophys. 353, 396.

    ADS  Google Scholar 

  26. Kota, J. and Jokipii, J. R.: 1983, Astrophys. J. 265, 573.

    Article  ADS  Google Scholar 

  27. Makarov, V. I. and Makarova, V. V.: 1996, Solar Phys. 163, 267.

    Article  ADS  Google Scholar 

  28. Mayaud, P. N.: 1973, IAGA Bull. 33, 262.

    Google Scholar 

  29. Obridko, V. N. and Shelting, B. D.: 1992, Solar Phys. 137, 167.

    Article  ADS  Google Scholar 

  30. Richardson, I. G., Cliver, E. W., and Cane, H. V.: 2000, J. Geophys. Res. 105, 18203.

    ADS  Google Scholar 

  31. Roy, J. R.: 1977, Solar Phys. 52, 53.

    Article  ADS  Google Scholar 

  32. Simpson, J. A.: 1954, Phys. Rev. 94, 426.

    Article  ADS  Google Scholar 

  33. Skoug, R. M., Gosling, J., Steinberg, J., McComas, D. J., Smith, C. W., Ness, N. F. et al.: 2004, J. Geophys. Res. 109, A09102, doi: 10.1029/2004JA010494.

  34. Snyder, C. W., Neugebauer, M., and Rao, U. R.: 1963, J. Geophys. Res. 68, 6361.

    ADS  Google Scholar 

  35. Storini, M. and Pase, S.: 1995, in T. Watanabe (ed.), Proc. 2nd SOLTIP Symp., STEP GBRSC News, 5, (special issue), 255–258.

  36. Storini, M., Pase, S., Sýkora, J., and Parisi, M.: 1997, Solar Phys. 172, 317.

    Article  ADS  Google Scholar 

  37. Sugiura, M. and Poros, D. J.: 1971, GSFC Publication X-645-71-278, July.

  38. Sýkora, J.: 1980, in M. Dryer and E. Tandberg-Hanssen (eds.), Solar and Interplanetary Dynamics, D. Reidel Publ. Co., Dordrecht, p. 87.

    Google Scholar 

  39. Temmer, M, Veronig, A., and Hanslmeir, A.: 2002, Astron. Astrophys. 390, 707.

    Article  ADS  Google Scholar 

  40. Tsurutani, B. T., Gonzalez, W. D., Gonzalez, A. L. C., Tang, F., Arballo, J. K., and Okada, M.: 1995, J. Geophys. Res. 100, 21717.

    Article  ADS  Google Scholar 

  41. Vernova, E. S., Mursula, K., Tyasto, M. I., and Baranov, D. G.: 2002, Solar Phys. 205, 371.

    Article  ADS  Google Scholar 

  42. Waldmeier, M.: 1957, Die Sonnencorona II, Birkäuser Verlag, Basel.

    Google Scholar 

  43. Wang, Y.-M. and Sheeley, N. R.: 2002, J. Geophys. Res. 107(A10), 1302, doi: 10.1029/2001JA000500, SSH 10, 1–15, 2002.

  44. Webb, D. F. and Howard, R. A.: 1994, J. Geophys. Res. 99, 4201.

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. P. Kane.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kane, R.P. Which One is the ‘GNEVYSHEV’ GAP?. Sol Phys 229, 387–407 (2005). https://doi.org/10.1007/s11207-005-7451-7

Download citation

Keywords

  • Solar Wind
  • Solar Phys
  • Solar Wind Speed
  • Peak Structure
  • Geomagnetic Index