Skip to main content
Log in

Effects of Complexity on the Flux-Tube Tectonics Model

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The quiet-Sun magnetic field emerges through the solar photosphere in a multitude of mixed-polarity magnetic concentrations and is subsequently tangled up into intricate regions of interconnecting flux. Moreover, since these discrete concentrations are likely to be extremely small in size, with fluxes of around only 1017 Mx, the number of such flux sources in, say, a supergranule, will be extremely large. The flux-tube tectonics model of Priest, Heyvaerts, and Title (2002) demonstrated how the formation and dissipation of current sheets along the separatrices that separate the regions of different connectivity are likely to make an important contribution to coronal heating. Since the full complexity of the magnetic field is below present observable scales, this study examines the effect of having the magnetic flux emerge through configurations structured on smaller and smaller scales. It is found that, by fixing the amount of flux emerging into a given 2D region, the main factors influencing the current build-up along the separatrices are the number of sources through which the flux emerges and the spatial distribution of the sources on the photosphere. The free energy (i.e., that above potential) is stored lower and lower in the atmosphere as the complexity of the system increases. A simple comparison is then made between coronal heating by separator currents and by separatrix currents. It is found that both result in comparable amounts of energy release, with separatrix heating being the more dominant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amari, T. and Aly, J. J.: 1990, Astron. Astrophys. 231, 213.

    Google Scholar 

  • Close, R. M., Parnell, C. E., Longcope, D. W., and Priest, E. R.: 2004, Astrophys. J. 612, L81.

    Google Scholar 

  • Dungey, J. W.: 1958, Cosmic Electrodynamics Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Galsgaard, K. and Nordlund, A.: 1997, J. Geophys. Res. 102, 231.

    Google Scholar 

  • Galsgaard, K., Parnell, C. E., and Blaizot, J.: 2000, Astron. Astrophys. 362, 395.

    Google Scholar 

  • Goossens, M.: 1991, Advances in Solar System MHD Cambridge University Press, Cambridge, UK, p. 137.

    Google Scholar 

  • Hagenaar, H. J.: 2001, Astrophys. J. 555, 448.

    Google Scholar 

  • Heyvaerts, J. and Priest, E. R.: 1984, Astron. Astrophys. 137, 63.

    Google Scholar 

  • Hollweg, J. V.: 1983, Solar Wind 5 NASA CP-2280, Washington, DC, p. 1.

  • Lau, Y. T. and Finn, J. M.: 1990, Astrophys. J. 350, 672.

    Google Scholar 

  • Lau, Y. T. and Finn, J. M.: 1996, Phys. Plasmas3, 3983.

    Google Scholar 

  • Livingston, W. C. and Harvey, J. W.: 1975, Bull. Amer. Astron. Soc. 7, 346.

    Google Scholar 

  • Longcope, D. W.: 1996, Solar Phys. 169, 91.

    Google Scholar 

  • Longcope, D. W.: 1998, Astrophys. J. 507, 433.

    Google Scholar 

  • Longcope, D. W.: 2001, Phys. Plasmas8, 5277.

    Google Scholar 

  • Low, B. C.: 1977, Astrophys. J. 212, 234.

    Google Scholar 

  • Martin, S. F.: 1988, Solar Phys. 117(2), 243.

    Google Scholar 

  • Mellor, C., Gerrard, C. L., Galsgaard, K., Hood, A. W., and Priest, E. R.: 2004, Solar Phys, submitted.

  • Parker, E. N.: 1972, Astrophys. J. 174, 499.

    Google Scholar 

  • Parker, E. N.: 1979, Cosmical Magnetic Fields Oxford University Press, Oxford.

    Google Scholar 

  • Parker, E. N.: 1994, Spontaneous Current Sheets in Magnetic Fields Oxford University Press, Oxford.

    Google Scholar 

  • Parnell, C. E. and Priest, E. R.: 1995, Geophys. Astrophys. Fluid Dynam. 80, 255.

    Google Scholar 

  • Priest, E. R. and Titov, V. S.: 1996, Phil. Trans. R. Soc. Lond. A354, 2951.

    Google Scholar 

  • Priest, E. R., Heyvaerts, J. F., and Title, A. M.: 2002, Astrophys. J. 576, 533.

    Google Scholar 

  • Roberts, B.: 1991, Advances in Solar MHD Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Schindler, K., Hesse, M., and Birn, J.: 1988, J. Geophys. Res. 93(A6), 5547.

    Google Scholar 

  • Schrijver, C. J. and Title, A. M.: 2002, Solar Phys. 207, 223.

    Google Scholar 

  • Schrijver, C. J., Title, A. M., Ballegooijen, A. A. V., Hagenaar, J. H., and Shine, R. A.: 1997, Astrophys. J. 487, 424.

    Google Scholar 

  • Title, A. M.: 2000, Phil. Trans. R. Soc. Lond. A358, 657.

    Google Scholar 

  • Titov, V. S. and Priest, E. R.: 1993, Geophys. Astrophys. Fluid Dynam. 72(1-4), 249.

    Google Scholar 

  • Vekstein, G. E. and Priest, E. R.: 1992, Astron. Astrophys. 384, 333.

    Google Scholar 

  • Vekstein, G. E. and Priest, E. R.: 1993, Astron. Astrophys. 146, 119.

    Google Scholar 

  • Vekstein, G. E., Priest, E. R., and Amari, T.: 1990, Astron. Astrophys. 243, 492.

    Google Scholar 

  • Wang, H.: 1988, Solar Phys. 117(2), 343.

    Google Scholar 

  • Wolfson, R. and Low, B. C.: 1988, Astrophys. J. 391, 353.

    Google Scholar 

  • Zirin, H.: 1987, Solar Phys. 110, 101.

    Google Scholar 

  • Zwingmann, W., Schindler, K., and Birn, J.: 1985, Solar Phys. 99, 133.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Close.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Close, R.M., Heyvaerts, J.F. & Priest, E.R. Effects of Complexity on the Flux-Tube Tectonics Model. Sol Phys 225, 267–292 (2004). https://doi.org/10.1007/s11207-004-4279-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-004-4279-5

Keywords

Navigation