Global Cybersecurity Index (GCI) and the Role of its 5 Pillars

Abstract

Computer crime is a matter of increasing concern, and worldwide action is required if the proper responses to it are to be found. One of the tools that can be deployed here is the Global cybersecurity index (GCI), a control and feedback mechanism based on a composite indicator. The GCI is based on a hierarchy of sub-indicators. The indicators used for the final aggregation of the CGI are called pillars. Five pillars are applied to rank the eleven countries that are top of the rankings in a worldwide study. In this paper, our ranking is based on these pillars, and their role is investigated using partial order methodology. It turns out that the pillars “Technical (aspects)”, “Capacity building”, and “Cooperation” are of particular importance. In conclusion, a strategy is suggested for an “individualized ranking” that may be helpful for small and medium-sized enterprises (SMEs) or other institutions. Here, we apply the procedure for the project “Awareness Laboratory SME (ALARM) information security” and put our ideas up for discussion. In particular, the mathematical method will be transferred to SMEs as a means to support the effectiveness of awareness-raising measures and to improve the security behaviour of company employees.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

source: Public domain, via Wikimedia Commons. Retrieved from: https://commons.wikimedia.org/wiki/File:The_Earth_seen_from_Apollo_17.jpg

References

  1. Annoni, P., Brüggemann, R., & Carlsen, L. (2017). Pecularities in multidimensional regional poverty. In M. Fattore & R. Brüggemann (Eds.), Partial Order Concepts in Applied Sciences (pp. 121–133). Springer.

    Chapter  Google Scholar 

  2. Backhaus, K., Erichson, B., Plinke, W., & Weiber, R. (2000). Multivariate Analysemethoden - eine anwendungsorientierte Einführung. Springer-Verlag.

    Book  Google Scholar 

  3. Bruggemann, R., & Annoni, P. (2014). Average heights in partially ordered sets. MATCH Commun Math Comput Chem, 71, 101–126.

    Google Scholar 

  4. Bruggemann, R., & Bartel, H.-G. (1999). A theoretical concept to rank environmentally significant chemicals. Journal of Chemical Information and Computer Sciences, 39, 211–217.

    Article  Google Scholar 

  5. Bruggemann, R., & Carlsen, L. (2016). An attempt to understand noisy posets. MATCH Commun Math Comput Chem, 75, 485–510.

    Google Scholar 

  6. Bruggemann, R., & Carlsen, L. (2021). Uncertainty in weights for composite indicators generated by weighted sums. In R. Bruggemann, L. Carlsen, T. Beycan, C. Suter, & F. Maggino (Eds.), Measuring and Understanding Complex Phenomena -Indicators and their Analysis in Different Scientific Fields (pp. 45–62). Springer.

    Google Scholar 

  7. Bruggemann, R., Carlsen, L., Voigt, K., & Wieland, R. (2014). PyHasse software for partial order analysis. In R. Bruggemann, L. Carlsen, & J. Wittmann (Eds.), Multi-Indicator Systems and Modelling in Partial Order (pp. 389–423). Springer.

    Chapter  Google Scholar 

  8. Bruggemann, R., & Patil, G. P. (2011). Ranking and Prioritization for Multi-indicator Systems - Introduction to Partial Order Applications. Springer.

    Google Scholar 

  9. Bruggemann, R., Sørensen, P. B., Lerche, D., & Carlsen, L. (2004). Estimation of Averaged Ranks by a Local Partial Order Model. Journal of Chemical Information and Computer Sciences, 44, 618–625.

    Article  Google Scholar 

  10. Bruggemann, R., & Voigt, K. (2011). a new tool to analyze partially ordered sets - application: ranking of polychlorinated biphenyls and alkanes/alkenes in river main, Germany. MATCH Commun Math Comput Chem, 66, 231–251.

    Google Scholar 

  11. Carlsen, L. (2005). Partial order ranking of organophosphates with special emphasis on nerve agents. MATCH - Commun Mat Comput Chem, 54, 519–534.

    Google Scholar 

  12. Clark, J., & Holton, D. A. (1994). Graphentheorie. Spektrum Akademischer Verlag, Heidelberg.

    Google Scholar 

  13. Davey, B. A., & Priestley, H. A. (1990). Introduction to Lattices and Order. Cambridge University Press.

    Google Scholar 

  14. Doignon, J.-P., Falmagne, & J.C. . (1999). Knowledge Spaces. Springer.

    Book  Google Scholar 

  15. Figueira, J., Greco, S., & Ehrgott, M. (2005). Multiple Criteria Decision Analysis, State of the Art Surveys. Springer, Boston.

  16. Ganter, B., & Wille, R. (1996). Formale Begriffsanalyse: Mathematische Grundlagen. Springer-Verlag.

    Book  Google Scholar 

  17. GCI a: Global Cybersecurity Index. Retrieved from: https://www.itu.int/en/ITU-D/Cybersecurity/Pages/global-cybersecurity-index.aspx. Accessed: November 29, 2020

  18. GCI b: Global Cybersecurity Index. Retrieved from: https://www.itu.int/en/ITU-D/Cybersecurity/Documents/GCIv4/New_Reference_Model_GCIv4_V2_.pdf. Accessed: October 20, 2020.

  19. Newlin, J., & Patil, G. P. (2010). Application of partial order to stream channel assessment at bridge infrastructure for mitigation management. Environmental and Ecological Statistics, 17, 437–454.

    Article  Google Scholar 

  20. Scholl, M. (2018). Information Security Awareness in Public Administrations. In Ubaldo Comite, Public Management and Administration. 1–30. Open Access: InTechOpen.

  21. Scholl, M. (2020). (How) can directive (EU) 2019/1937 on whistleblowers be used to build up a security and safety culture in Institutions? Information Security Education Journal (ISEJ), 7(2), 40–57.

    Google Scholar 

  22. Scholl, M., & Ehrlich, E. (2020). Information security officer: Job profile, necessary qualifications, and awareness raising explained in a practical way. Buchwelten Verlag.

    Google Scholar 

  23. Spoto, A., Stefanutti, L., & Vidotto, G. (2010). Knowledge space theory, formal concept analysis, and computerized psychological assessment. Behavior Research Methods, 42(1), 342–350.

    Article  Google Scholar 

  24. Trotter, W. T. (1992). Combinatorics and partially ordered sets. The Johns Hopkins University Press, Baltimore, Maryland.

    Google Scholar 

  25. Voigt, K., Welzl, G., & Bruggemann, R. (2004). Data analysis of environmental air pollutant monitoring systems in Europe. Environmetrics, 15, 577–596.

    Article  Google Scholar 

  26. Voß,M. (2010). Die ungarische Methode – ein Algorithmus für Bipartite Matchings. GRIN, Norderstedt, Deutschland

  27. Winkler, P. (1982). Average height in a partially ordered set. Discrete Mathematics, 39, 337–341.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank maths teacher Klaus-Jürgen Hügel for his didactic recommendations and Simon Cowper for his professional proofreading of the text. The funding institution is the German Federal Ministry for Economic Affairs and Energy (BMWi). We thank the reviewers for their helpful comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rainer Bruggemann.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bruggemann, R., Koppatz, P., Scholl, M. et al. Global Cybersecurity Index (GCI) and the Role of its 5 Pillars. Soc Indic Res (2021). https://doi.org/10.1007/s11205-021-02739-y

Download citation

Keywords

  • Composite index
  • Pillars
  • Partial ordering
  • Awareness
  • Global cybersecurity index