Annoni, P., Brüggemann, R., & Carlsen, L. (2017). Pecularities in multidimensional regional poverty. In M. Fattore & R. Brüggemann (Eds.), Partial Order Concepts in Applied Sciences (pp. 121–133). Springer.
Chapter
Google Scholar
Backhaus, K., Erichson, B., Plinke, W., & Weiber, R. (2000). Multivariate Analysemethoden - eine anwendungsorientierte Einführung. Springer-Verlag.
Book
Google Scholar
Bruggemann, R., & Annoni, P. (2014). Average heights in partially ordered sets. MATCH Commun Math Comput Chem, 71, 101–126.
Google Scholar
Bruggemann, R., & Bartel, H.-G. (1999). A theoretical concept to rank environmentally significant chemicals. Journal of Chemical Information and Computer Sciences, 39, 211–217.
Article
Google Scholar
Bruggemann, R., & Carlsen, L. (2016). An attempt to understand noisy posets. MATCH Commun Math Comput Chem, 75, 485–510.
Google Scholar
Bruggemann, R., & Carlsen, L. (2021). Uncertainty in weights for composite indicators generated by weighted sums. In R. Bruggemann, L. Carlsen, T. Beycan, C. Suter, & F. Maggino (Eds.), Measuring and Understanding Complex Phenomena -Indicators and their Analysis in Different Scientific Fields (pp. 45–62). Springer.
Google Scholar
Bruggemann, R., Carlsen, L., Voigt, K., & Wieland, R. (2014). PyHasse software for partial order analysis. In R. Bruggemann, L. Carlsen, & J. Wittmann (Eds.), Multi-Indicator Systems and Modelling in Partial Order (pp. 389–423). Springer.
Chapter
Google Scholar
Bruggemann, R., & Patil, G. P. (2011). Ranking and Prioritization for Multi-indicator Systems - Introduction to Partial Order Applications. Springer.
Google Scholar
Bruggemann, R., Sørensen, P. B., Lerche, D., & Carlsen, L. (2004). Estimation of Averaged Ranks by a Local Partial Order Model. Journal of Chemical Information and Computer Sciences, 44, 618–625.
Article
Google Scholar
Bruggemann, R., & Voigt, K. (2011). a new tool to analyze partially ordered sets - application: ranking of polychlorinated biphenyls and alkanes/alkenes in river main, Germany. MATCH Commun Math Comput Chem, 66, 231–251.
Google Scholar
Carlsen, L. (2005). Partial order ranking of organophosphates with special emphasis on nerve agents. MATCH - Commun Mat Comput Chem, 54, 519–534.
Google Scholar
Clark, J., & Holton, D. A. (1994). Graphentheorie. Spektrum Akademischer Verlag, Heidelberg.
Google Scholar
Davey, B. A., & Priestley, H. A. (1990). Introduction to Lattices and Order. Cambridge University Press.
Google Scholar
Doignon, J.-P., Falmagne, & J.C. . (1999). Knowledge Spaces. Springer.
Book
Google Scholar
Figueira, J., Greco, S., & Ehrgott, M. (2005). Multiple Criteria Decision Analysis, State of the Art Surveys. Springer, Boston.
Ganter, B., & Wille, R. (1996). Formale Begriffsanalyse: Mathematische Grundlagen. Springer-Verlag.
Book
Google Scholar
GCI a: Global Cybersecurity Index. Retrieved from: https://www.itu.int/en/ITU-D/Cybersecurity/Pages/global-cybersecurity-index.aspx. Accessed: November 29, 2020
GCI b: Global Cybersecurity Index. Retrieved from: https://www.itu.int/en/ITU-D/Cybersecurity/Documents/GCIv4/New_Reference_Model_GCIv4_V2_.pdf. Accessed: October 20, 2020.
Newlin, J., & Patil, G. P. (2010). Application of partial order to stream channel assessment at bridge infrastructure for mitigation management. Environmental and Ecological Statistics, 17, 437–454.
Article
Google Scholar
Scholl, M. (2018). Information Security Awareness in Public Administrations. In Ubaldo Comite, Public Management and Administration. 1–30. Open Access: InTechOpen.
Scholl, M. (2020). (How) can directive (EU) 2019/1937 on whistleblowers be used to build up a security and safety culture in Institutions? Information Security Education Journal (ISEJ), 7(2), 40–57.
Google Scholar
Scholl, M., & Ehrlich, E. (2020). Information security officer: Job profile, necessary qualifications, and awareness raising explained in a practical way. Buchwelten Verlag.
Google Scholar
Spoto, A., Stefanutti, L., & Vidotto, G. (2010). Knowledge space theory, formal concept analysis, and computerized psychological assessment. Behavior Research Methods, 42(1), 342–350.
Article
Google Scholar
Trotter, W. T. (1992). Combinatorics and partially ordered sets. The Johns Hopkins University Press, Baltimore, Maryland.
Google Scholar
Voigt, K., Welzl, G., & Bruggemann, R. (2004). Data analysis of environmental air pollutant monitoring systems in Europe. Environmetrics, 15, 577–596.
Article
Google Scholar
Voß,M. (2010). Die ungarische Methode – ein Algorithmus für Bipartite Matchings. GRIN, Norderstedt, Deutschland
Winkler, P. (1982). Average height in a partially ordered set. Discrete Mathematics, 39, 337–341.
Article
Google Scholar