Advertisement

Detecting Public Social Spending Patterns in Italy Using a Three-Way Relative Variation Approach

  • Violetta Simonacci
  • Michele Gallo
Article

Abstract

Studies on public social spending often fail to address the issues connected with budgetary constraints. Budget lines require public entities to partition resources among sectors of spending on the basis of preferred combinations and trade-offs. Standard exploratory tools do not allow to unveil this preference structure as they are hindered by the differences in budget scales and by the bounded nature of sector variability, i.e. an increase in one sector means a missed increase or a decrease in other sectors. In this work Italian public social spending is modeled with an alternative log-ratio methodology which allows to study relative variation patterns among sectors. It is also important to note that since the data is collected across time a three-way approach is recommended so that the variability of each mode is kept separate.

Keywords

Budgetary constraint CANDECOMP/PARAFAC Compositions Logcontrast Multi-way data Welfare expenditures 

References

  1. Aitchison, J. (1983). Principal component analysis of compositional data. Biometrika, 70(1), 57–65.CrossRefGoogle Scholar
  2. Aitchison, J. (1986). The statistical analysis of compositional data. Boca Raton: Chapman & Hall.CrossRefGoogle Scholar
  3. Aitchison, J., & Greenacre, M. (2002). Biplots of compositional data. Journal of the Royal Statistical Society: Series C (Applied Statistics), 51(4), 375–392.CrossRefGoogle Scholar
  4. Bergeron-Boucher, M. P., Simonacci, V., Oeppen, J., & Gallo, M. (2018). Coherent modeling and forecasting of mortality patterns for subpopulations using multiway analysis of compositions: An application to Canadian provinces and territories. North American Actuarial Journal, 22(1), 1–27.CrossRefGoogle Scholar
  5. Billheimer, D., Guttorp, P., & Fagan, W. F. (2001). Statistical interpretation of species composition. Journal of the American Statistical Association, 96(456), 1205–1214.CrossRefGoogle Scholar
  6. Carroll, J. D., & Chang, J. J. (1970). Analysis of individual differences in multidimensional scaling via an N-way generalization of Eckart-Young decomposition. Psychometrika, 35(3), 283–319.CrossRefGoogle Scholar
  7. Ceulemans, E., & Kiers, H. A. (2006). Selecting among three-mode principal component models of different types and complexities: A numerical convex hull based method. British Journal of Mathematical and Statistical Psychology, 59(1), 133–150.CrossRefGoogle Scholar
  8. Egozcue, J. J., Barceló-Vidal, C., Martín-Fernández, J. A., Jarauta-Bragulat, E., Díaz-Barrero, J. L., & Mateu-Figueras, G. (2011). Elements of simplicial linear algebra and geometry. In V. Pawlowsky-Glahn, A. Buccianti (Eds.), Compositional data analysis: theory and applications (pp. 141–157). Chichester: Wiley.Google Scholar
  9. Engle, M. A., Gallo, M., Schroeder, K. T., Geboy, N. J., & Zupancic, J. W. (2014). Three-way compositional analysis of water quality monitoring data. Environmental and Ecological Statistics, 21(3), 565–581.CrossRefGoogle Scholar
  10. Eurostat. (2017). Social protection statistics—main indicators. Statistics Explained [online]. Available at http://ec.europa.eu/eurostat/statistics-explained/index.php/Social_protection_statistics__main_indicators.
  11. Fry, T. (2011). Applications in economics. In V. Pawlowsky-Glahn, A. Buccianti (Eds.), Compositional data analysis: theory and applications (pp. 318–326). Chichester: Wiley.CrossRefGoogle Scholar
  12. Gallo, M. (2015). Tucker3 model for compositional data. Communications in Statistics-Theory and Methods, 44, 4441–4453.CrossRefGoogle Scholar
  13. Gallo, M., & Simonacci, V. (2013). A procedure for the three-mode analysis of compositions. Electronic Journal of Applied Statistical Analysis, 6(2), 202–210.Google Scholar
  14. Harshman, R. A. (1970). Foundations of the PARAFAC procedure: Models and conditions for an ‘explanatory’ multi-modal factor analysis. UCLA Working Papers in Phonetics, 16, 1–84.Google Scholar
  15. ISTAT (2013) Gli interventi e i servizi sociali dei comuni singoli e associati [online]. Available at http://www.istat.it/it/files/2013/05/STATISTICA_REPORT_COMUNI_2010_DEF.pdf.
  16. ISTAT (2015). Indagine sugli interventi e i servizi sociali dei comuni singoli e associati [online]. Available at http://www.istatit/it/archivio/166482.
  17. Kroonenberg, P. M. (2008). Applied multiway data analysis (Vol. 702). Hoboken: Wiley.CrossRefGoogle Scholar
  18. OECD (2007). Glossary of Statistical Terms [online]. Available at https://stats.oecd.org/glossary/index.htm.
  19. OECD (2016). Social Expenditure Update [online]. Available at http://www.oecd.org/social/expenditure.htm.
  20. Pawlowsky-Glahn, V., & Egozcue, J. J. (2001). Geometric approach to statistical analysis on the simplex. Stochastic Environmental Research and Risk Assessment, 15(5), 384–398.CrossRefGoogle Scholar
  21. Pawlowsky-Glahn, V., Egozcue, J. J., & Tolosana-Delgado, R. (2015). Modeling and analysis of compositional data. Hoboken: Wiley.Google Scholar
  22. R. Core Team, et al. (2013). R: A language and environment for statistical computing. Vienna: Austria.Google Scholar
  23. Smilde, A., Bro, R., & Geladi, P. (2004). Multi-way analysis with applications in the chemical sciences. Chichester, UK: Wiley.CrossRefGoogle Scholar
  24. Tucker, L. R. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika, 31(3), 279–311.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Naples “L’Orientale” - DISUSNaplesItaly

Personalised recommendations