Antonides, G., & Van Der Sar, N. L. (1990). Individual expectations, risk perception and preferences in relation to investment decision making. Journal of Economic Psychology, 11(2), 227–245.
Google Scholar
Bertaccini, B., Grilli, L., & Rampichini, C. (2013). An IRT-MIMIC Model for the analysis of university student careers. Journal of Methodological and Applied Statistics, 15, 95–110.
Google Scholar
Bottazzi, L., Da Rin, M., & Hellmann, T. (2016). The importance of trust for investment: Evidence from venture capital. Review of Financial Studies, 29, 2283–2318.
Google Scholar
Braun, D., & Tausendpfund, M. (2014). The impact of the euro crisis on citizens support for the european union. Journal of European Integration, 36(3), 231–245.
Google Scholar
Callens, M. (2017). Long term trends in life satisfaction, 1973–2012: Flanders in europe. Social Indicators Research, 130(1), 107–127.
Google Scholar
Carpita, M., & Manisera, M. (2012). Constructing indicators of unobservable variables from parallel measurements. Electronic Journal of Applied Statistical Analysis, 5(3), 320–326.
Google Scholar
Ciavolino, E. (2012). General distress as second-order latent variable estimated through PLS-PM approach. Electronic Journal of Applied Statistical Analysis, 5(3), 458–464.
Google Scholar
Ciavolino, E., & Al-Nasser, A. D. (2009). Comparing generalised maximum entropy and partial least squares methods for structural equation models. Journal of Nonparametric Statistics, 21(8), 1017–1036.
Google Scholar
Ciavolino, E., Carpita, M., & Al-Nasser, A. (2015a). Modelling the quality of work in the Italian social co-operatives combining NPCA-RSM and SEM-GME approaches. Journal of Applied Statistics, 42(1), 161–179.
Google Scholar
Ciavolino, E., Carpita, M., & Nitti, M. (2015b). High-order PLS path model with qualitative external information. Quality & Quantity, 49(4), 1609–1620.
Google Scholar
Ciavolino, E., & Nitti, M. (2013a). Simulation study for PLS path modelling with high-order construct: A job satisfaction model evidence. In A. N. Proto, M. Squillante, & J. Kacprzyk (Eds.), Advanced dynamic modeling of economic and social systems (pp. 185–207). Berlin: Springer.
Google Scholar
Ciavolino, E., & Nitti, M. (2013b). Using the hybrid two-step estimation approach for the identification of second-order latent variable models. Journal of Applied Statistics, 40(3), 508–526.
Google Scholar
Colombi, R., & Giordano, S. (2016). A class of mixture models for multidimensional ordinal data. Statistical Modelling, 16(4), 322–340.
Google Scholar
Corduas, M. (2014). Analyzing bivariate ordinal data with cub margins. Statistical Modelling,. https://doi.org/10.1177/1471082X14558770.
Article
Google Scholar
D’Elia, A., & Piccolo, D. (2005). A mixture model for preference data analysis. Computational Statistics and Data Analysis, 49, 917–934.
Google Scholar
Diamantopoulos, A., Riefler, P., & Roth, K. P. (2008). Advancing formative measurement models. Journal of Business Research, 61(12), 1203–1218.
Google Scholar
Diamantopoulos, A., & Winklhofer, H. M. (2001). Index construction with formative indicators: An alternative to scale development. Journal of Marketing Research, 38(2), 269–277.
Google Scholar
Dickes, P., Fusco, A., & Marlier, E. (2010). Structure of national perceptions of social needs across EU countries. Social Indicators Research, 95(1), 143.
Google Scholar
Djankov, S., Nikolova, E., & Zilinsky, J. (2016). The happiness gap in eastern europe. Journal of Comparative Economics, 44(1), 108–124.
Google Scholar
Edwards, J. R., & Bagozzi, R. P. (2000). On the nature and direction of relationships between constructs and measures. Psychological Methods, 5(2), 155.
Google Scholar
Esposito Vinzi, V., Chin, W. W., Henseler, J., & Wang, H. (2010). Handbook of partial least squares. Berlin: Springer.
Google Scholar
European Commission. (2014). Public opinion in the European Union. Standard Eurobarometer 81, Spring. European Commission. http://ec.europa.eu/public_opinion/cf/index_en.cfm. Accessed Oct 2015.
Finch, W. H., & French, B. F. (2011). Estimation of MIMIC Model parameters with multilevel data. Structural Equation Modeling, 18(2), 229–252.
Google Scholar
Gabel, M., & Palmer, H. D. (1995). Understanding variation in public support for european integration. European Journal of Political Research, 27(1), 3–19.
Google Scholar
Gifi, A. (1990). Nonlinear multivariate analysis. Chichester: Wiley.
Google Scholar
Goldberger, A. S. (1972). Structural equation methods in the social sciences. Econometrica: Journal of the Econometric Society, 40(6), 979–1001.
Google Scholar
Golia, S. (2015). On the interpretation of the uncertainty parameter in CUB Models. Electronic Journal of Applied Statistical Analysis, 8(3), 312–328.
Google Scholar
Grilli, L., Iannario, M., Piccolo, D., & Rampichini, C. (2014). Latent class CUB Models. Advances in Data Analysis and Classification, 8(1), 105–119.
Google Scholar
Hand, D. J., & Crowder, M. J. (2005). Measuring customer quality in retail banking. Statistical Modelling, 5(2), 145–158.
Google Scholar
Havasi, V. (2013). Financial situation and its consequences on the quality of life in the EU countries. Social Indicators Research, 113(1), 17–35.
Google Scholar
Hester, J. B., & Gibson, R. (2003). The economy and second-level agenda setting: A time-series analysis of economic news and public opinion about the economy. Journalism & Mass Communication Quarterly, 80(1), 73–90.
Google Scholar
Hetherington, M. J. (1996). The media’s role in forming voters’ national economic evaluations in 1992. American Journal of Political Science, 40, 372–395.
Google Scholar
Hobolt, S. B., & de Vries, C. E. (2016). Public support for european integration. Annual Review of Political Science, 19, 413–432.
Google Scholar
Hovi, M., & Laamanen, J.-P. (2016). Mind the gap? Business cycles and subjective well-being. Applied Economics Letters,23, 1206–1209.
Google Scholar
Iannario, M. (2012). Modelling shelter choices in a class of mixture models for ordinal responses. Statistical Methods and Applications, 20, 1–22.
Google Scholar
Iannario, M. (2014). Modelling uncertainty and overdispersion in ordinal data. Communications in Statistics-Theory and Methods, 43(4), 771–786.
Google Scholar
Iannario, M., & Piccolo, D. (2012). CUB Models: Statistical methods and empirical evidence. In R. S. Kenett & S. Salini (Eds.), Modern analysis of customer surveys (pp. 231–258). New York: Wiley.
Google Scholar
Jarvis, C. B., MacKenzie, S. B., & Podsakoff, P. M. (2003). A critical review of construct indicators and measurement model misspecification in marketing and consumer research. Journal of Consumer Research, 30(2), 199–218.
Google Scholar
Jöreskog, K. G., & Goldberger, A. S. (1975). Estimation of a model with multiple indicators and multiple causes of a single latent variable. Journal of the American Statistical Association, 70(351a), 631–639.
Google Scholar
Kim, E. S., Yoon, M., Wen, Y., Luo, W., & Kwok, O.-M. (2015). Within-level group factorial invariance with multilevel data: Multilevel factor mixture and multilevel MIMIC Models. Structural Equation Modeling: A Multidisciplinary Journal, 22(4), 603–616.
Google Scholar
Krishnakumar, J., & Nagar, A. L. (2008). On exact statistical properties of multidimensional indices based on principal components, factor analysis, mimic and structural equation models. Social Indicators Research, 86(3), 481–496.
Google Scholar
Lee, N., Cadogan, J. W., & Chamberlain, L. (2013). The MIMIC Model and formative variables: Problems and solutions. AMS Review, 3(1), 3–17.
Google Scholar
MacKenzie, S. B., Podsakoff, P. M., & Jarvis, C. B. (2005). The problem of measurement model misspecification in behavioral and organizational research and some recommended solutions. Journal of Applied Psychology, 90(4), 710.
Google Scholar
Maltritz, D., Buehn, A., & Eichler, S. (2012). Modelling country default risk as a latent variable: A multiple indicators multiple causes approach. Applied Economics, 44(36), 4679–4688.
Google Scholar
Manisera, M., & Zuccolotto, P. (2014). Modeling rating data with Nonlinear CUB Models. Computational Statistics & Data Analysis, 78, 100–118.
Google Scholar
Manisera, M., & Zuccolotto, P. (2015). Visualizing multiple results from nonlinear CUB Models with r grid viewports. Electronic Journal of Applied Statistical Analysis, 8(3), 360–373.
Google Scholar
Moustaki, I., & Steele, F. (2005). Latent variable models for mixed categorical and survival responses, with an application to fertility preferences and family planning in Bangladesh. Statistical Modelling, 5(4), 327–342.
Google Scholar
Nissen, S. (2014). The eurobarometer and the process of European integration. Quality & Quantity, 48(2), 713–727.
Google Scholar
Nitti, M., & Ciavolino, E. (2014). A deflated indicators approach for estimating second-order reflective models through PLS-PM: An empirical illustration. Journal of Applied Statistics, 41(10), 2222–2239.
Google Scholar
Oberski, D., & Vermunt, J. (2015). The CUB Model and its variations are restricted loglinear latent class models. Electronic Journal of Applied Statistical Analysis, 8(6), 374–383.
Google Scholar
Pruitt, S. W., & Hoffer, G. E. (1989). Economic news as a consumer product: An analysis of the effects of alternative media sources on the formation of consumer economic expectations. Journal of Consumer Policy, 12(1), 59–69.
Google Scholar
Serricchio, F., Tsakatika, M., & Quaglia, L. (2013). Euroscepticism and the global financial crisis. JCMS: Journal of Common Market Studies, 51(1), 51–64.
Google Scholar
Skrondal, A., & Rabe-Hesketh, S. (2004). Generalized latent variable modeling: Multilevel, longitudinal, and structural equation models. Boca Raton: CRC Press.
Google Scholar
Stapleton, D. C. (1978). Analyzing political participation data with a MIMIC Model. Sociological Methodology, 9, 52–74.
Google Scholar
Tekwe, C. D., Carter, R. L., & Cullings, H. M. (2016). Generalized multiple indicators, multiple causes measurement error models. Statistical Modelling, 16(2), 140–159.
Google Scholar
Wold, H. (1975). Path models with latent variables: The NIPALS approach. In Blalock, H. M. (Ed.), Quantitative Sociology (pp. 307–357). New York: Academic Press, INC.
Google Scholar
Woods, C. M. (2009). Evaluation of MIMIC-Model methods for DIF testing with comparison to two-group analysis. Multivariate Behavioral Research, 44(1), 1–27.
Google Scholar
Yang, C.-C. (2005). MIMIC latent class analysis model for alcoholic diagnosis. Structural Equation Modeling, 12(1), 130–147.
Google Scholar