Advertisement

A Multilevel Multinomial Model for the Dynamics of Graduates Employment in Italy

  • Sandra De Iaco
  • Sabrina Maggio
  • Donato Posa
Article
  • 81 Downloads

Abstract

Several studies have demonstrated that skilled human capital is a key resource for the economic growth of a territory, since it helps to increase productivity, competitiveness and sustainability over time. The aim of this paper is to model the probability of working for university graduates 3 years after degree, taking into account the effectiveness and coherence of a degree with respect to the labour market. Hence, first of all, a multilevel binary logit model for measuring the probability of working will be discussed. Then, a multilevel multinomial model suitable to predict the probability of the possible job status, such as unemployed/unsteady employed/steady employed, will be further proposed. The ISTAT microdata regarding the Italian survey on the graduates’ employment conditions, will be used.

Keywords

Skilled human capital Odd-ratios Multilevel binary logit model Multilevel multinomial logit model 

Notes

Acknowledgements

The authors are grateful to the Editor and the reviewers for their interest in the paper and the constructive suggestions provided during the revision process.

References

  1. Agresti, A. (2002). Categorical data analysis (2nd ed., p. 701). Hoboken: Wiley. ISBN: 0471360937.Google Scholar
  2. Aitkin, M. (2010). Statistical inference: An integrated Bayesian/likelihood approach (p. 254)., Chapman & Hall/CRC monographs on statistics & applied probability Boca Raton: CRC Press. ISBN: 9781420093438.Google Scholar
  3. Ballarino, G., & Bratti, M. (2009). Field of study and university graduates’ early employment outcomes in Italy during 1995–2004. Labour, 23(3), 421–457.CrossRefGoogle Scholar
  4. Belloc, F., Maruotti, A., & Petrella, L. (2011). How individual characteristics affect university students drop-out: A semiparametric mixed-effects model for an Italian case study. Journal of Applied Statistics, 38(10), 2225–2239.CrossRefGoogle Scholar
  5. Berg, I. E., & Gorelick, S. (2003). Education and jobs: The great training robbery (p. 200). New York: Percheron Press. ISBN: 9780971242753.Google Scholar
  6. Biggeri, L., Bini, M., & Grilli, L. (2001). The transition from university to work: A multilevel approach to the analysis of the time to obtain the first job. Journal of the Royal Statistical Society: Series A (Statistics in Society), 164(2), 293–305.CrossRefGoogle Scholar
  7. Bini, M., Grilli, L., & Rampichini, C. (2011). Contextual factors of the external effectiveness of the university education: A multilevel approach. Italian Journal of Applied Statistics, 23(1), 51–65.Google Scholar
  8. Brooks, S. P., & Roberts, G. O. (1998). Convergence assessment techniques for Markov chain Monte Carlo. Statistics and Computing, 8, 319–335.CrossRefGoogle Scholar
  9. Browne, W. J. (1998). Applying MCMC methods to multi–level models. Ph.D. thesis, University of Bath.Google Scholar
  10. Browne, W. J. (2014). MCMC estimation in MLwiN, version 2.31 (p. 441). Centre for Multilevel Modelling, University of Bristol. Printed in the United Kingdom, ISBN: 9780903024990.Google Scholar
  11. Browne, W. J., & Draper, D. (2006). A comparison of Bayesian and likelihood-based methods for fitting multilevel models. Bayesian Analysis, 1(3), 473–514.CrossRefGoogle Scholar
  12. Cammelli, A., Antonelli, G., di Francia, A., Gasperoni, G., & Sgarzi, M. (2011). Mixed outcomes of the Bologna process in Italy. In H. Schomburg & U. Teichler (Eds.), Employability and mobility of bachelor graduates in Europe. Key results of the Bologna process (pp. 143–170). Rotterdam, The Netherlands: Sense Publishers.CrossRefGoogle Scholar
  13. Cowles, M. K., & Carlin, B. P. (1996). Markov chain Monte Carlo convergence diagnostic: A comparative review. Journal of the American Statistical Association, 91, 883–904.CrossRefGoogle Scholar
  14. De Leeuw, J., & Meijer, E. (2008). Handbook of multilevel analysis (p. 493). Berlin: Springer. ISBN: 9780387731834.Google Scholar
  15. Di Berardino, C., Mauro, G., Quaglione, D., & Sarra, A. (2015). Industrial districts and socio-economic well-being: An investigation on the Italian provinces disparities. Social Indicators Research, 129, 337–363.CrossRefGoogle Scholar
  16. Dyker, D. A. (2010). Network dynamics in emerging regions of Europe (p. 385). Singapore: Imperial College Press. ISBN: 9781848163737.Google Scholar
  17. Di Pietro, G., & Urwin, P. (2006). Education and skills mismatch in the Italian graduate labour market. Applied Economics, 38(1), 79–93.CrossRefGoogle Scholar
  18. Freeman, R. B. (1976). The overeducated American (p. 218). New York: Academic Press. ISBN: 9780122672507.Google Scholar
  19. Gill, J., & Womack, A. J. (2013). The multilevel model framework. The SAGE handbook of multilevel modeling (pp. 3–20). Gainesville: University of Florida.CrossRefGoogle Scholar
  20. Grilli, L., & Mealli, F. (2008). Nonparametric bounds on the causal effect of university studies on job opportunities using principal stratification. Journal of Educational and Behavioral Statistics, 33(1), 111–130.CrossRefGoogle Scholar
  21. Grilli, L., & Rampichini, C. (2007). A multilevel multinomial logit model for the analysis of graduates’ skills. Statistical Methods and Applications, 16(3), 381–393.CrossRefGoogle Scholar
  22. Grilli, L., Rampichini, C., & Varriale, R. (2016). Statistical modelling of gained university credits to evaluate the role of pre-enrolment assessment tests: An approach based on quantile regression for counts. Statistical Modelling, 16(1), 47–66.CrossRefGoogle Scholar
  23. Grilli, L., Pennoni, F., Rampichini, C., & Romeo, I. (2016). Exploiting TIMSS and PIRLS combined data: Multivariate multilevel modelling of student achievement. The Annals of Applied Statistics, 10(4), 2405–2426.CrossRefGoogle Scholar
  24. Goldstein, H. (2010). Multilevel statistical models (4th ed., p. 384). New York: Oxford University Press Inc. ISBN: 9780470748657.Google Scholar
  25. Hox, J. (2002). Multilevel analysis techniques and applications (p. 316). Mahwah: Lawrence Erlbaum Associates Publishers. ISBN: 0805832181.Google Scholar
  26. Lombardo, R., & Passarelli, G. (2011). Graduates’ job quality after a higher education reform: Evidence regarding second level graduates from a University in Southern Italy. Research in Applied Economics, 3(2), 1–19.CrossRefGoogle Scholar
  27. Longford, N. T. (1993). Random coefficient models (p. 270). Oxford: Claredon Press. ISBN: 9780198522645.Google Scholar
  28. Martinelli, A., Chiesi, A. M., & Stefanizzi, S. (1999). Recent Social Trends in Italy, 1960–1995 (p. 486). Kingston: McGill-Queen’s University Press. ISBN: 0773518428.Google Scholar
  29. Misanew, A., & Tadesse, M. (2014). Determinants of student and staff satisfaction with services at Dilla University, Ethiopia: Application of single and multilevel logistic regression analyses. Social Indicators Research, 119(3), 1571–1587.CrossRefGoogle Scholar
  30. Mollica, C., & Petrella, L. (2017). Bayesian binary quantile regression for the analysis of Bachelor-to-Master transition. Journal of Applied Statistics, 44(15), 2791–2812.CrossRefGoogle Scholar
  31. Moutinho, L. A. M., & Hutcheson, G. D. (2011). The SAGE dictionary of quantitative management research (p. 344). ISBN: 9781412935296.Google Scholar
  32. Pozzoli, D. (2009). The transition to work for Italian university graduates. Labour, 23(1), 131–169.CrossRefGoogle Scholar
  33. Rahona-López, M., & Pérez-Esparrells, C. (2013). Educational attainment and educational mismatch in the first employment in Spain (p. 7). ISRN Education, ID 850827.Google Scholar
  34. Rasbash, J., Steele, F., Browne, W. J., & Goldstein, H. (2009). A user’s guide to MLwiN version 2.10 (3rd ed., p. 314). Bristol: Centre for Multilevel Modelling, University of Bristol. ISBN: 9780903024976.Google Scholar
  35. Schomburg, H., & Teichler, U. (2011). Employability and mobility of bachelor graduates in Europe (p. 282). ISBN: 9789460915680.Google Scholar
  36. Sciulli, D., & Signorelli, M. (2011). University-to-work transitions: An empirical analysis on Perugia graduates. European Journal of Higher Education, 1(1), 39–65.CrossRefGoogle Scholar
  37. Snijders, T. A. B., & Bosker, R. J. (2012). Multilevel Analysis: An introduction to basic and advanced multilevel modelling (p. 368). London: Sage Publishers. ISBN: 9781849202008.Google Scholar
  38. Szanton, D. L. (2004). The politics of knowledge: Area studies and the disciplines world global, area, and international archive (p. 435). Berkeley: University of California Press. ISBN: 9780520245365.Google Scholar
  39. Scott, M. A., Simonoff, J. S., & Marx, B. D. (2013). The SAGE handbook of multilevel modeling (p. 696). Jai Seaman (Ed.), Great Britain. ISBN: 9780857025647.Google Scholar
  40. Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & van der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(4), 583–639.CrossRefGoogle Scholar
  41. Sverke, M. (2004). Job insecurity and union membership: European Unions in the wake of flexible production (p. 202). Brussels:Cambridge University Press. ISBN: 9052012024.Google Scholar
  42. Tutz, G. (2012). Regression for categorical data (p. 554). Cambridge: Cambridge University Press. ISBN: 9781107009653.Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Management and Economics (Sect. Mathematics and Statistics)University of SalentoLecceItaly

Personalised recommendations