Multidimensional Analysis of Deprivation and Fragility Patterns of Migrants in Lombardy, Using Partially Ordered Sets and Self-Organizing Maps

  • Alberto Arcagni
  • Elisa Barbiano di Belgiojoso
  • Marco Fattore
  • Stefania M. L. Rimoldi
Article
  • 20 Downloads

Abstract

In this paper, we present a multidimensional fuzzy analysis of the levels and the patterns of poverty and social fragility of migrants’ families, in the Italian region of Lombardy, in year 2014. Migrants’ poverty emerges as a complex trait, better described as a stratification of nuanced patterns than in black and white terms; Lombard migrants are in fact affected, to different extents, by “a diffused sharing of deprivation facets” and cannot be trivially split into deprived and non-deprived. The paper employs innovative data analysis tools from the Theory of Partially Ordered Sets; compared to mainstream monetary approaches, this leads to more realistic estimates of poverty diffusion and eliminates some well-known biases of standard evaluation procedures, providing strong support to the use of partial order concepts and tools in social evaluation studies.

Keywords

Fuzzy poverty Multidimensional deprivation Migrants Partially ordered set Social fragility 

References

  1. Aaberge, R., Andersen, A. S., & Wennemo, T. (1999). Extent, level and distribution of low income in Norway 1979 1995. In B. Gustafsson & P. J. Pedersen (Eds.), Poverty and low income in the nordic countries (pp. 131–168). Vermont: Ashgate.Google Scholar
  2. Alkire, S., & Foster, J. (2011). Counting and multidimensional poverty measurement. Journal of Public Economics, 95(7–8), 476–487.CrossRefGoogle Scholar
  3. Annoni, P., & Bruggemann, R. (2009). Exploring partial order of European Countries. Social Indicators Research, 92, 471–487.CrossRefGoogle Scholar
  4. Annoni, P., Fattore, M., & Bruggemann, R. (2011). A multi-criteria fuzzy approach for analyzing poverty structure (pp. 7–30). Statistica & Applicazioni (Special Issue).Google Scholar
  5. Arcagni, A., & Fattore, M. (2014). PARSEC: An R package for poset-based evaluation of multidimensional poverty. In R. Bruggemann, L. Carlsen, & J. Wittmann (Eds.), Multi-indicator systems and modelling in partial order. Berlin: Springer.Google Scholar
  6. Badinger, H., & Reuter, W. H. (2015). Measurement of fiscal rules: introducing the application of partially ordered set (POSET) theory. Journal of Macroeconomics, 43, 108–123.CrossRefGoogle Scholar
  7. Baio, G., Blangiardo, G. C., & Blangiardo, M. (2011). Centre Sampling Technique in Foreign Migration Surveys: aMethodological Note. Journal of Official Statistics, 27(3), 451–465.Google Scholar
  8. Bank of Italy. (2015). Supplementi al bollettino statistico. Indagini campionarie. I bilanci nelle famiglie Italiane nellanno 2014. Year XXV(64).Google Scholar
  9. Barbiano di Belgiojoso, E., & Rimoldi, S. (2005). Povertá e immigrazione straniera: resoconto dellesperienza di unindagine pilota nella realtá lombarda. In G. Rovati (Ed.), Le dimensioni della povertá. Strumenti di misura e politiche. Roma: Carocci.Google Scholar
  10. Barbiano di Belgiojoso, E., Chelli, F. M., & Paterno, A. (2009). Povertá e standard di vita della popolazione straniera in Lombardia [Poverty and living standard of foreign population in Lombardy Region]. Rivista Italiana diEconomia, Demografia e Statistica, LXIII, 3(4), 23–30.Google Scholar
  11. Bárcena-Martìn, E., & Pérez-Moreno, S. (2016). Immigrant-native gap in poverty: A cross-national European perspective. Review of Economics of the Household.  https://doi.org/10.1007/s11150-015-9321-x (published online).
  12. Berti, F., D’Agostino, A., Lemmi, A., & Neri, A. (2014). Poverty and deprivation of migrants versus natives in Italy. International Journal of Social Economics, 41(8), 630–649.CrossRefGoogle Scholar
  13. Blangiardo, G. C. (2008). (Ed.). L’immigrazione straniera in Lombardia. La settima indagine regionale. Rapporto 2007. Milano: ISMU-ORIM.Google Scholar
  14. Blume, K., Gustafsson, B., Pedersen, P. J., & Verner, M. (2003). A tale of two countries: Poverty among migrants in Denmark and Sweden since 1984. UNU/WIDER Discussion Paper, 2003/36.Google Scholar
  15. Blume, K., Gustafsson, B., Pedersen, P. J., & Verner, M. (2007). At the lower end of the table: Determinants of poverty among migrants to Denmark and Sweden. Journal of Ethnic and Migration Studies, 33(3), 373–396.CrossRefGoogle Scholar
  16. Busetta, A. (2016). Foreigners in Italy: Economic living conditions and unmet medical needs. Genus, 71, 2–3.Google Scholar
  17. Carlsen, L. (2015). An alternative view on distribution keys for the possible relocation of refugees in the European Union. Social indicators research, 130, 1147–1163.CrossRefGoogle Scholar
  18. Carlsen, L., & Bruggemann, R. (2016). Fragile State Index: Trends and developments. A partial order data analysis. Social indicators research, 133(1), 1–14.CrossRefGoogle Scholar
  19. Constant, A., Roberts, R., & Zimmermann, K. (2009). Ethnic identity and immigrant homeownership. Urban Studies, 46(9), 1879–1898.CrossRefGoogle Scholar
  20. Curatolo, S., & Wolleb, G. (2010). Income vulnerability in Europe. In C. Ranci (Ed.), Social vulnerability in Europe. The new configuration of social risk. Chipenham and Eastbourne: Palgrave Macmillan.Google Scholar
  21. Davidov, E., & Weick, S. (2011). Transition to homeownership among immigrant groups and natives in West Germany, 1984–2008. Journal of Immigrant & Refugee Studies, 9(4), 393–415.CrossRefGoogle Scholar
  22. de Carvalho, I. S. F. P. (2016). Poverty and precarity in Portugal: A multidimensional approach (Doctoral dissertation, NOVA School of Business and Economics).Google Scholar
  23. della Queva, S. (2017). Analysis of social participation: A multidimensional approach based on the theory of partial ordering. In M. Fattore & R. Bruggemann (Eds.), Partial order concepts in applied sciences. Berlin: Springer.Google Scholar
  24. di Bella, E., Gandullia, L., Leporatti, L., & Orcamo, P. (2016). Ranking and prioritization of emergency departments based on multi-indicator systems. Social Indicators Research.  https://doi.org/10.1007/s11205-016-1537-5.Google Scholar
  25. Di Brisco, A. M., & Farina, P. (2017). Measuring Gender Gap from a Poset Perspective. Social Indicators Research.  https://doi.org/10.1007/s11205-017-1582-8.Google Scholar
  26. Diana, P., & Strozza, S. (2014). Strategie abitative degli immigrati nel casertano: la costruzione di una tipologia. In P. Donadio, G. Gabrielli, & M. Massari (Eds.), Uno come te. Europei e nuovi europei nei percorsi di integrazione (pp. 262–279). Milano: Franco Angeli.Google Scholar
  27. Fattore, M., Bruggemann, R., & Owsiński, J. (2011). Using poset theory to compare fuzzy multidimensional material deprivation across regions. In S. Ingrassia, R. Rocci, & M. Vichi (Eds.), New Perspectives in statistical modeling and data analysis. Berlin: Springer.Google Scholar
  28. Fattore, M., Maggino, F., & Colombo E. (2012). From composite indicators to partial order: Evaluating socio-economic phenomena through ordinal data. In F. Maggino & G. Nuvolati (Eds.), Quality of life in Italy: Research and reflections. Social Indicators Research Series 48. New York: Springer.Google Scholar
  29. Fattore, M., & Maggino, F. (2014). Partial orders in socio-economics: A practical challenge for poset theorists or a cultural challenge for social scientists? In R. Bruggemann, L. Carlsen, & J. Wittmann (Eds.), Multi-indicator systems and modelling in partial order. Berlin: Springer.Google Scholar
  30. Fattore, M., & Maggino, F. (2015). A new method for measuring and analyzing suffering—Comparing suffering patterns in Italian society. In R. E. Anderson (Ed.), World Suffering and the Quality of Life. New York: Springer.Google Scholar
  31. Fattore, M. (2016). Partially ordered sets and the measurement of multidimensional ordinal deprivation. Social Indicators Research, 128(2), 835–858.CrossRefGoogle Scholar
  32. Fattore, M., & Arcagni, A. (2016). A reduced posetic approach to the measurement of multidimensional ordinal deprivation. Social Indicators Research.  https://doi.org/10.1007/s11205-016-1501-4.Google Scholar
  33. Fellini, I., & Migliavacca, M. (2010). Unstable employment in Western Europe: Exploring the individual and household dimensions. In C. Ranci (Ed.), Social vulnerability in Europe. The new configuration of social risk. Chippenham and Eastbourne: Palgrave Macmillan.Google Scholar
  34. Fernades, A., & Pereira, M. J. (2009). Health and migration in the European Union: Better health for all in an inclusive society. London: Pro-book, Publishing Limited.Google Scholar
  35. Fleury, D. (2007). A study of poverty and working poverty among recent migrants in Canada. Human Resources and Social Development Canada: Human Resources and Social Development Canada (Final report Ottawa).Google Scholar
  36. Galloway, T. A., & Aaberge, R. (2005). Assimilation effects on poverty among migrants in Norway. Journal of Population Economics, 18(4), 691–718.CrossRefGoogle Scholar
  37. Giannoni, M. (2010). Migrants inequalities in unmet needs for access to health care in Italy. In Paper presented at the 15th Aies conference, Moncalieri, Italy.Google Scholar
  38. Gobillon, L., & Solignac, M. (2015). Homeownership of migrants in France: Selection effects related to international migration flows, Discussion Paper 9517. Institute for the Study of Labor (IZA).Google Scholar
  39. Hansen, J., & Lofstrom, M. (2003). Immigrant assimilation and welfare participation do migrants assimilate into or out of welfare? Journal of Human Resources, 38(1), 74–98.CrossRefGoogle Scholar
  40. Hansen, J., & Wahlberg, R. (2009). Poverty and its persistence: A comparison of natives and migrants in Sweden. Review of the Economics of the Household, 7, 105–132.CrossRefGoogle Scholar
  41. Hulle, Van M. M. (2012). Self-organizing maps. In G. Rozenberg, T. Bäck, & J. N. Kok (Eds.), Handbook of natural computing. Berlin, Heidelberg: Springer.Google Scholar
  42. Iglesias, K., Suter, C., Beycan, T., & Vani, B. P. (2016). Exploring multidimensional well-being in Switzerland: Comparing three synthesizing approaches. Social Indicators Research.  https://doi.org/10.1007/s11205-016-1452-9 (published online).
  43. Istat. (2011). I redditi delle famiglie con stranieri. Anno 2008–2009. Statistiche report.Google Scholar
  44. Istat. (2007, 2015). Resident Municipal Population by age, sex and marital status. http://dati.istat.it.
  45. Istat. (2008, 2016). Poverty new series. http://dati.istat.it.
  46. Kazemipur, A., & Halli, S. S. (2001). Migrants and ’New Poverty’: The case of Canada. International Migration Review, 35(4), 1129–1156.CrossRefGoogle Scholar
  47. Kim, J., & Tebaldi, E. (2011). The migrants’ odds to sleep into poverty: Double Jeopardy? Eastern Economic Journal, 37, 530–552.CrossRefGoogle Scholar
  48. Kohonen, T. (2001). Self-organizing maps. Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  49. Kohonen, T. (2013). Essentials of the self organizing map. Neural Networks, 37, 52–65.CrossRefGoogle Scholar
  50. Koolman, X. (2007). Unmet need for health care in Europe, in EUROSTAT, Comparative EU statistics on income and living conditions: Issues and challenges. In Proceedings of the EU-SILC Conference (pp. 181–191).Google Scholar
  51. Kosny, M., & Yalonetxky, G. (2016). Relative p-bipolarisation measurement with generalised means and hybrid Lorenz curve. Ecineq Working Paper Series, 404.Google Scholar
  52. Koutsampelas, C. (2015). Blind spots of traditional poverty measurement: The case of migrants. Migration Letters, 12(2), 103–112.Google Scholar
  53. Lelkes, O. (2007). Poverty among migrants in Europe. Policy Brief April 2007. Vienna: European Centre for Social Welfare Policy and Research.Google Scholar
  54. Lemmi, A., Berti, F., Betti, G., D’Agostino, A., Gagliardi, F., Gambacorta, et al. (2013). Povertà e deprivazione. In C. Saraceno, N. Sartor, & G. Sciortino (Eds.), Stranieri e disuguali (pp. 149–174). Bologna: Il Mulino.Google Scholar
  55. Lie, B. (2002). Immigration and immigrants (pp. 1–113). Statistical Analyses 54, Statistics Norway, Norway.Google Scholar
  56. Lucchini, M., & Assi, J. (2013). Mapping patterns of multiple deprivation and well-being using self-organizing maps: An application to Swiss Household Panel Data. Social Indicators Research, 112(1), 129–149.CrossRefGoogle Scholar
  57. Muñozoz de Bustillo, R., & Anton, J. I. (2011). From rags to riches? Immigration and poverty in Spain. Population Research and Policy Review, 30, 661–676.CrossRefGoogle Scholar
  58. Myers, D., & Lee, S. W. (1998). Immigrant trajectories into home ownership: A temporal analysis of residential assimilation. International Migration Review, 32(3), 593–625.CrossRefGoogle Scholar
  59. Obućina, O. (2014). Paths into and out of poverty among migrants in Sweeden. Acta Sociologica, 57(1), 5–23.CrossRefGoogle Scholar
  60. Pastor, M. (2014). Stepping stone or sink hole? Migrants, poverty, and the future of Metropolitan America. In Conference paper, innovating to end urban poverty conference, March 27–28, University of Southern California, Los Angeles.Google Scholar
  61. Pemberton, S., Phillimore, J., & Robinson, D. (2014). Causes and experiences of poverty among economic migrants in the UK. IRiS Working Paper Series, 4, University of Birmingham.Google Scholar
  62. R Core Team. (2016). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. http://www.R-project.org/.
  63. Raphael, E., & Smolensky, E. (2009). Immigration and poverty in the United States. American Economic Review, Papers and Proceedings, 44(2), 41–44.CrossRefGoogle Scholar
  64. Rimoldi, S. M. L., & Barbiano di Belgiojoso, E. (2016). Poor migrants! Evidence from the Italian Case. Athens Journal of Social Sciences, 3(2), 99–112.Google Scholar
  65. Ripley, B. D. (1996). Pattern recognition and neural networks. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  66. Robinson, R., Reeve, K., & Casey, R. (2007). The housing pathways to migrants. York: Joseph Rowntree Foundation.Google Scholar
  67. Serrano, Sanguilinda I., Barbiano di Belgiojoso, E., & González Ferrer A., & Rimoldi S. M. L., & Blangiardo G. C., (2017). Surveying immigrants in Southern Europe: Spanish and Italian strategies in comparative perspective. Comparative Migration Studies, 5, 17.  https://doi.org/10.1186/s40878-017-0060-4.
  68. Sullivan, D. H., & Ziegert, A. L. (2008). Hispanic immigrant poverty: Does ethnic origin matter? Population Research and Policy Review, 27(6), 667.CrossRefGoogle Scholar
  69. Yalonetzky, G. (2016). The necessary requirement of median independence for relative bipolarisation measurement. Ecineq Working Paper Series, 420.Google Scholar
  70. Wehrens, R., & Buydens, L. M. C. (2007). Self- and super-organising maps in R: The kohonen package. Journal of Statistical Software, 21(5), 1–19.CrossRefGoogle Scholar
  71. Wolfson, M. (1994). When inequalities diverge. The American Economic Review, 84(2), 353–358.Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Statistics and Quantitative MethodsUniversity of Milano-BicoccaMilanItaly

Personalised recommendations