Skip to main content


Log in

Poverty in Mexico: Its relationship to social and cultural indicators

  • Published:
Social Indicators Research Aims and scope Submit manuscript


This paper investigates associations of poverty with social and cultural indicators. In contrast to past studies that have primarily investigated the relationship of poverty to different levels of income, our approach introduces new variables that have not been examined in conjunction with this phenomenon. Through the application of multivariate statistical analysis and visual representations, we investigate associations between a set of seven variables and three official indexes of poverty. We contrasted two periods: the year 2000 and the year 2010. Both periods include a total of 10 variables for the 32 administrative provinces of the country. Contrary to common belief, the poorest provinces do not report the highest number of murders; thus, there is not a clear relationship between poverty levels and violent death. The number of historical sites per 100,000 inhabitants is weakly associated with poverty levels, which suggests that tourism-development strategies have failed in effectively tackling poverty. We provide evidence to suggest that the formula for calculating the unemployment rate should be revised because it does not properly describe the phenomenon of poverty. The partial effectiveness of the Oportunidades program in tackling poverty is demonstrated. The aim of this paper is more illustrative than prescriptive. Our results are intended to contribute to a discussion of the multidimensional analysis of poverty. Rather than prescribing the appropriate methods for measuring poverty, our contribution illustrates how multivariate analysis and visual representations can improve our overall comprehension of poverty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others


  1. This number is calculated based on a population of 110 million in 2010 (0.60 × 0.019 × 110 million).

  2. Official unemployment ratio is calculated on the basis of the total population, which is registered on the social security (SS). In order to be registered on the SS, it is mandatory to have a formal job.

  3. This fact is consistent with the program for transitioning to the digital TV, launched by the federal government in 2015. It gave free TVs to persons already benefiting from the Oportunidades program.


  • Alkire, S., & Santos, M. E. (2009). Poverty and Inequality Measurement. In S. Deneulin & L. Shahani (Eds.), An introduction to the human development and capability approach (Vol. 6, pp. 120–161). London, UK: Earthscan.

    Google Scholar 

  • Alkire, S., & Foster, J. (2011). Counting and multidimensional poverty measurement. Journal of Public Economics, 95(7–8), 476–487. doi:10.1016/j.jpubeco.2010.11.006.

    Article  Google Scholar 

  • Alkire, S., & Santos, M. E (2010). Acute multidimensional poverty: A new index for developing countries. United Nations development programme human development report office background paper (2010/11):39. Retrieved December16, 2015, (

  • Alkire, S., & Santos, M. E. (2013). A multidimensional approach: poverty measurement & beyond. Social Indicators Research, 112(2), 239–257. doi:10.1007/s11205-013-0257-3.

    Article  Google Scholar 

  • Azevedo, V., & Robles, M. (2013). Multidimensional targeting: Identifying beneficiaries of conditional cash transfer programs. Social Indicators Research, 112(2), 447–475. doi:10.1007/s11205-013-0255-5.

    Article  Google Scholar 

  • Battiston, D., Cruces, G., Lopez-Calva, L. F., Lugo, M. A., & Santos, M. E. (2013). Income and beyond: Multidimensional poverty in six Latin American countries. Social Indicators Research, 112(2), 291–314. doi:10.1007/s11205-013-0249-3.

    Article  Google Scholar 

  • Bécue-Bertaut, M., & Pagès, J. (2014). Correspondence analysis of textual data involving contextual information: Ca–Galt on principal components. Advances in Data Analysis and Classification, 9(2), 125–142. doi:10.1007/s11634-014-0171-9.

    Article  Google Scholar 

  • Benita, F. (2015). Social backwardness in Mexico City metropolitan area. Social Indicators Research, 126(1), 141–160. doi:10.1007/s11205-015-0889-6.

    Article  Google Scholar 

  • Byrne, D. (2008). Fuzzy set approach to multidimensional poverty measurement. Journal of Regional Science, 48(2), 487–489. doi:10.1111/j.1467-9787.2008.00559_15.x.

    Article  Google Scholar 

  • Calva, L. F. L., & Juárez, E. O. (2009). Medición multidimensional de la pobreza en México: significancia estadística en la inclusión de dimensiones no monetarias. Estudios Económicos, 1, 3–33.

    Google Scholar 

  • Campos-Vazquez, R. M., & Arceo-Gomez, E. O. (2013). Evolución De La Brecha Salarial De Género En México. Trimestre Económico., 323(3), 619–653.

    Google Scholar 

  • Carles, C. M. (2012). Nuevos Métodos De Análisis Multivariante. Barcelona España: CMC Editions.

    Google Scholar 

  • Chen, K. M., & Wang, T. M. (2015). Determinants of poverty status in Taiwan: A multilevel approach. Social Indicators Research, 123(2), 371–389. doi:10.1007/s11205-014-0741-4.

    Article  Google Scholar 

  • CONEVAL. (2009). Metodología Para La medición Multidimensional De La Pobreza En México. Mexico City, Mexico: Consejo Nacional de Evaluación de la Política de Desarrollo Social.

    Google Scholar 

  • CONEVAL. (2010) Consejo Nacional De La Evaluación De La Política De Desarrollo Social. Mexico City, Mexico. Retrieved September 17, 2015. (

  • CONEVAL. (2014). Metodología Para La Medición Multidimensional De La Pobreza En México, Edited by CONEVAL Ediciones. México DF: Consejo Nacional de Evaluación de la Política de Desarrollo Social.

    Google Scholar 

  • Cordera Campos, R., Anguiano Roch, E. C. S. Cuauhtémoc, Escobar Toledo, S., Esquivel Hernández, G., Heredia Zubieta C., Ibarra Muñoz, D., Lomelí Vanegas, L., López Martínez, P., Murayama Rendón, C., Navarrete López J. E., Samaniego Breach, N., Herzog Flores, J. S., Suárez Dávila, F., Tello Macías, C., & del Val Blanco, E. (2012). México Frente a La Crisis: Hacia Un Nuevo Curso De Desarrollo. ejournal.unam, 6:54.

  • Esquivel, G. (2015). Desigualdad extrema en México: Concentración del poder económico y político. Reporte de Oxfam México 23.

  • Greenacre, M. (2007). Correspondence analysis in practice. London, UK: CRC Press.

    Book  Google Scholar 

  • Hair, J. F, Black, W. C., Babin, B. J., Anderson, R. E., Tatham, R. L. (2006). Multivariate data analysis, Vol. 6. Pearson Prentice Hall Upper Saddle River, NJ.

  • Hunter, J. E., & Hamilton, M. A. (2002). The advantages of using standardized scores in causal analysis. Human Communication Research., 28(4), 552–561. doi:10.1111/j.1468-2958.2002.tb00823.x.

    Article  Google Scholar 

  • INEGI. (2016). Producto Interno Bruto (Pib). Mexico City: Instituto Nacional de Estadística Geografía e Informática (INEGI). Retrieved January 25, 2016.

  • Kaiser, H. F. (1970). A second generation little Jiffy. Psychometrika, 35(4), 401–415.

    Article  Google Scholar 

  • Kim, S.-G. (2015). Fuzzy multidimensional poverty measurement: An analysis of statistical behaviors. Social Indicators Research, 120(3), 635–667. doi:10.1007/s11205-014-0616-8.

    Article  Google Scholar 

  • Lei, M.-K., Simons, R. L., Simons, L. G., & Edmond, M. B. (2014). Gender equality and violent behavior: How neighborhood gender equality influences the gender gap in violence. Violence and Victims, 29(1), 89–108. doi:10.1891/0886-6708.VV-D-12-00102.

    Article  Google Scholar 

  • Lever, J. P. (2004). Poverty and subjective well-being in Mexico. Social Indicators Research, 68(1), 1–33. doi:10.1023/b:soci.0000025567.04153.46.

    Article  Google Scholar 

  • Nápoles, R., & Ordaz Díaz, J. L. (2011). Evolución Reciente Del Empleo Y El Desempleo En México. Economía UNAM, 8(23), 91–105.

    Google Scholar 

  • Nash, J., & Sutcliffe, J. (1970). River flow forecasting through conceptual models, Part 1: a discussion of principles. Journal of Hydrology, 70(90255), e90256.

    Google Scholar 

  • Netemeyer, R., Bentler, P., Bagozzi, R., Cudeck, R., Cote, J., Lehmann, D., et al. (2001). Structural equations modeling. Journal of Consumer Psychology., 10(1), 83–100.

    Article  Google Scholar 

  • Oxford Poverty & Human Development Initiative (OPHI). (2014). Multidimensional poverty measurement: Informing policy around the world. Oxford: Oxford Poverty & Human Development Initiative. University of Oxford. Retrieved February 06, 2015, (

  • Revelle, W. (2016). An overview of the psych package. Retrieved August 2, 2016, from “Personality Project” website:

  • Ríos, V. (2013). Why did Mexico become so violent? A self-reinforcing violent equilibrium caused by competition and enforcement. Trends in organized crime., 16(2), 138–155. doi:10.1007/s12117-012-9175-z.

    Article  Google Scholar 

  • Sen, A. K. (1987). Commodities and Capabilities: Professor Dr. P. Hennipman Lectures in Economics, 1982 Delivered at the University of Amsterdam: Oxford University Press.

  • Smith, L. I. (2002). A tutorial on principal components analysis. Cornell University, USA, 51, 52.

    Google Scholar 

  • United Nations Development Program (UNDP). (2010). Human Development Report 2010. New York: United Nations Development Program. Retrieved August 15, 2015, (

  • Van Der Berg, S. (2008). Poverty and Education. Education Policy Series,10: 28. Retrieved September 17, 2015.

  • VanBuuren, S., & Groothuis-Oudshoorn, K. (2011). MICE: Multivariate imputation by chained equations in R. Journal of Statistical Software, 45(3), 67.

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Igor Barahona.


Appendix 1

Figures 5 and 6 show the goodness of fit between our collected data and proposed indexes.

Figure 7a, b are contrasting the feeding poverty measures and values of Ind-I for year 2000. On Fig. 8a, b the contrasting between murders and Ind-II for the same period.

Figure 9a, b are contrasting the feeding poverty measures and values of Ind-I for year 2010. On Fig. 10a, b the contrasting between deaths and Ind-II for the same period.

Appendix 2

See Tables 3, 4.

Table 3 Values for poverty and the investigated variables. Year 2000
Table 4 Values for poverty and the investigated variables. Year 2010

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barahona, I. Poverty in Mexico: Its relationship to social and cultural indicators. Soc Indic Res 135, 599–627 (2018).

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: