Skip to main content

Time in the Development of Indicators on Sustainable Wellbeing: A Local Experiment in Developing Alternative Indicators


This paper is a theoretical and methodological study on the topics of distribution of and competition between time spans dedicated to social activities in the development of sustainable well-being indicators. This article seeks to answer the following question: why and how should we take into account social time in the development of alternative indicators? To bring to light the complex relationship between well-being, sustainability and people’s relationship to time, this article draws on an experiment aimed at developing Regional Sustainable Well-being Indicators (Indicateurs de Bien-être Soutenable Territorialisés—IBEST), which took place in the Grenoble urban area. This experiment was based on two methodologies; the first one being a quantitative survey, and the second one being a series of qualitative interviews coupled with a participatory approach. One of the datasheet indicators developed following this methodological crossover is the activity times balancing indicator, which allows us to take into consideration the pressure affecting time spent on social activities (work, leisure, families and civic engagement).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Source: Ottaviani (2015, p. 264)

Fig. 3

Source: Ottaviani (2015, p. 380)

Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    The International Association for Time Use Research (IATUR) is one of the major contributors in this field.

  2. 2.

    It is essential to point out my involvement as researcher in a local experiment (IBEST) on the development of alternative indicators (supported by the Economic Research Centre at Pierre-Mendès-France University from 2011 to 2014 and financed by the Rhône-Alpes region) as I share the view of Gomez (2003, p. 261) that “research cannot make claim to limitless objectivity or exteriority without being naive: it is contextualised and embedded in a cultural, political and social space”. For more details on the IBEST experiment see:

  3. 3.

    For example, the datasheet recently presented by the Economic, Social and Environmental Council as well as France Stratégie (which consists of ten indicators to complete GDP) does not include any indicators on social time. Neither is the social time issue mentioned in the French government’s report: Les nouveaux indicateurs de richesse (Venturi 2015).

  4. 4.

    INSEE produce a Time Use survey. The survey’s results are available in the review Economie et Statistique.

  5. 5.

    A bill was defended by the Member of Parliament Eva Sas. Cf. Proposition de loi visant à la prise en compte des nouveaux indicateurs richesse dans la définition des politiques publiques, 29 September (2014).

  6. 6.

    Observatoire de la décision publique (2010), “Etat des lieux”, Pour de nouveaux indicateurs de richesse dans les Pays de la LoirePrésentation du projet, September.

  7. 7.

    To ensure representativeness, a quota for calls was introduced on traditional telephone lines, unbundled lines and mobile phones.

  8. 8.

    Two approaches to well-being are generally opposed to one another (Diener and Suh 1997, p. 92): (1) an objective approach to well-being that relies on indicators such as the gross school enrolment rate, income per capita, etc. and that corresponds to the social indicators established through Rawls’ theory, the capabilities theory and research on needs; and (2) a subjective approach that relies on individuals’ satisfaction and how they view the possibilities offered to them, which is the prerogative of the “Economics of Happiness”.

  9. 9.

    The preference adaptation phenomenon takes place in two ways: firstly, we can consider that those well-off people could have greater interest for certain goods than others. To the contrary, the least well off might be content with what little they have. Subsequently, something might occur that, in the “Economics of Happiness” theory is called “the negative influence of consumerism over common well-being”.

  10. 10.

    It is also notable that the components identified as contributing to well-being come together in these two approaches (Land 2004, p. 110).

  11. 11.

    This method has already been tested on a number of regions including Brittany and Wallonia in order to develop well-being indicators. It is based on establishing regional co-responsibility.

  12. 12.

    The opinions of citizens and professionals are available at:

  13. 13.

    This method has been tested in the framework of developing wealth indicators in the Pays de la Loire and the development of an indicator of social health for the Nord-Pas-de-Calais (Jany-Catrice and Marlier 2013).

  14. 14.

    The Principle of Generalization constitute an assessment criterion about the sustainability of an indicator. As an example, it does not seem desirable that all healthy people be medically followed up. However, a socially undesirable situation is when sick people cannot receive medical attention. This is why the variable used is not the percentage of people medically monitored, but is the percentage of those who are in mediocre or poor health that are not medically monitored.

  15. 15.

    With a maximum of 100.

  16. 16.

    The Statistical Package for the Social Sciences (SPSS) was used for all statistical analysis.

  17. 17.

    The k-means or dynamic clustering method is employed in the development of profiles. It is a non-hierarchical classification method which brings together individual entities on the basis of their similarities, contrary to hierarchical classification methods with divided groups using several “cut-off points” (Creusier and Bietry 2014, p. 108). The dynamic clustering non-hierarchical classification method has two main advantages over hierarchical classification methods. Firstly, this type of processing avoids classifying people into clear-cut categories, but brings together similar profiles in successive stages. Secondly, this method has the advantage of limiting the number of profiles presented and is therefore more concise than traditional classification methods.

  18. 18.

    The same analysis can be produced for each dimension, but it’s not necessary to present all profiles that can be created from the dashboard. Each analysis provide information by itself.

  19. 19.

    The way of using the dynamic clustering method, which is similar to the way decision trees are used by Losa et al. (2005), explains why in the analysis we did not systematically seek to label each group created.

  20. 20.

    The method of determining the profiles is the same as previously defined (a dynamic clustering non-hierarchical classification method).

  21. 21.

    These would include a policy in favor of gender equality in local administrations. Only 28 % of executive jobs in the territorial public service are for example occupied by women according to the report published by the Ministry of families, children and women's rights in March 2016.

  22. 22.

    This type of measure was also put forward in another study conducted in the Grenoble urban area on the parents' Observatoire de la vie familiale en Isère (2015, p. 54).

  23. 23.

    “Indicators on political representation and governance should help to assess the functioning of multi-party democracy and universal suffrage, the degree of participation in local level public authority decisions, and the existence of free media and various liberties” (Stiglitz et al. 2009, p.56).


  1. Alkire, S. (2008). The capability approach to the quality of life. Working paper prepared for the working group “Quality of Life”. Accessed January 26, 2016.

  2. Ballet, J., Bazin, D., Dubois, J.-L., & Mahieu, F.-R. (2011). A note on sustainability economics and the capability approach. Ecological Economics, 70(11), 1831–1834.

    Article  Google Scholar 

  3. Bleys, B. (2012). Beyond GDP: Classifying alternative measures for progress. Social Indicators Research, 109(3), 355–376.

    Article  Google Scholar 

  4. Boarini, R., Johansson, A., & Mira d’Ercole, M. (2006). Alternative measures of well-being. Statistics brief OECD, 11. Accessed January 26, 2016.

  5. Bowen, S., & Kreindler, S. A. (2008). Indicator madness: A cautionary reflection on the use of indicators in healthcare. Healthcare Policy, 4(3), 41–48.

    Google Scholar 

  6. Brousse, C. (2015). Travail professionnel, tâches domestiques, temps “libres”: Quelques déterminants sociaux de la vie quotidienne. Economie et Statistique, 478–480, 119–154.

    Article  Google Scholar 

  7. Callon, M., & Barthe, Y. (2005). Décider sans trancher. Négociations et délibérations à l’heure de la démocratie dialogique. Négociations, 4(2), 115–129.

    Article  Google Scholar 

  8. Champagne, C., Pailhé, A., & Solaz, A. (2015). Le temps domestique et parental des hommes et des femmes: Quels facteurs d’évolutions en 25 ans? Economie et Statistique, 478–480, 209–242.

    Article  Google Scholar 

  9. Chenu, A., & Herpin, N. (2002). Une pause dans la marche vers la civilisation des loisirs ? Economie et statistique, 352–353, 15–37. doi:10.3406/estat.2002.7391.

    Article  Google Scholar 

  10. Clastres, P. (1974). La société contre l’Etat (2011th ed.). Paris: Les Editions de Minuit.

    Google Scholar 

  11. Cordonnier, L. (2012). Eclairage sur la notion de biens communs. Accessed May 19, 2016.

  12. Creusier, J., & Bietry, F. (2014). Analyse comparative des méthodes de classification. L’exemple du bien-être au travail. RIMHE, 10(1), 105–123.

    Google Scholar 

  13. Daly, E. H., & Cobb, J. B., Jr. (1989). For the common good. Redirecting the economy toward community, the environnement and a sustainable future. Boston: Beacon Press.

    Google Scholar 

  14. de Gaulejac, V. (2009). La société malade de la gestion, Idéologie gestionnaire, pouvoir managérial et harcèlement social. Paris: Points.

    Google Scholar 

  15. Degenne, A., Lebeaux, M.-O., & Marry, C. (2002). Les usages du temps: Cumuls d’activité et rythme de vie. Economie et société, 352–353. Accessed January 26, 2016.

  16. Desrosières, A. (1992). Discuter l’indiscutable. Raison statistique et espace public. Raisons Pratiques, 3, 131–154.

    Google Scholar 

  17. Dewey, J. (1927). The public and its problems. University Park, PA: The Pennsylvania State University Press. (2012, reprinted from The Collected Works of John Dewey: The Later Workds, Volume 2: 1925-1927 by Board of Trustees, 1984).

    Google Scholar 

  18. Diaz-Bone, R., & Salais, R. (2011). Economics of convention and the history of economics. Towards a transdiciplinary approach in economic history. Historical Social Research, 36(4), 7–39.

    Google Scholar 

  19. Diener, E., & Suh, E. (1997). Measuring quality of life: Economic, social and subjectives indicators. Social Indicators Research, 40, 189–216. doi:10.1023/A:1006859511756.

    Article  Google Scholar 

  20. Dodier, N. (1996). Les sciences sociales face à la raison statistique (note critique). Annales. Histoire, Sciences sociales, 51(2), 409–428.

    Article  Google Scholar 

  21. Garner, H., Méda, D., & Senik, C.l. (2005). Conciliation entre vie professionnelle et vie familiale, les leçons des enquêtes auprès des ménages. Travail et Emploi, 102, 57–67. Accessed January 26, 2016.

  22. Gimenez-Nadal, J. I., & Sevilla-Sanz, A. (2011). The time-crunch paradox. Social Indicators Research, 102(2), 181–196. doi:10.1007/s11205-010-9689-1.

    Article  Google Scholar 

  23. Gomez, P.-Y. (2003). Recherche en action: Propositions épistémologiques pour l’analyse conventionnaliste. In M. Amblard (Ed.), Conventions & management (pp. 257–275). Bruxelles: De Boeck.

    Google Scholar 

  24. Harribey, J.-M. (1999). La soutenabilité: Une question de valeur(s). «Habilitation à diriger des recherches» in Economic Sciences, Université Montesquieu-Bordeaux IV, Working Paper CED, 34. Accessed January 26, 2016.

  25. Jany-Catrice, F. (2013). Indicateurs de richesse. In N. Postel & R. Sobel (Eds.), Dictionnaire critique de la RSE (pp. 247–251). Villeneuve d’Ascq: Presses Universitaires du Septentrion.

    Chapter  Google Scholar 

  26. Jany-Catrice, F., & Marlier, G. (2013). Regional indicators of well-being: The case of france. Community Quality-of-Life Indicators: Best Cases VI, 4, 19–44. doi:10.1007/978-94-007-6501-6_2.

    Google Scholar 

  27. Jany-Catrice, F., & Méda, D. (2011). Femmes et richesse: Au-delà du PIB. Travail, genre et sociétés, 26(2), 141–171. doi:10.3917/tgs.026.0147.

    Article  Google Scholar 

  28. Jonas, H. (1979) Le principe de responsabilité. Une éthique pour la civilisation technologique (translated in French by Greisch, J., Das Prinzip Verantwortung). Paris: Les Editions du Cerf, 1995 for the French edition.

  29. Land, K. C. (2004). An evidence-based approach to the construction of summary quality-of-life indices. In W. Glatzer, M. Stoffregen, & S. von Below (Eds.), Challenges for quality of life in the contemporary world (pp. 107–124). New York: Kluwer.

    Chapter  Google Scholar 

  30. Langlois, S. (2010). Mesurer scientifiquement le bonheur et la qualité de vie. In M. Fahmy (Ed.), L’Etat du Québec 2011 (pp. 143–154). Montréal: Boréal.

    Google Scholar 

  31. Lascoumes, P., & Le Bourhis, J.-P. (1998). Le bien commun comme construit territorial. Identités d’actions et procédures. Politix, 42(9), 37–66.

    Article  Google Scholar 

  32. Le Roy, A., Offredi, C., & Ottaviani, F. (2015). The challenges of participatory construction of social indicators of well-being. Social Indicators Research, 120, 689–700. doi:10.1007/s11205-014-0622-x.

    Article  Google Scholar 

  33. Le Roy, A., & Ottaviani, F. (2013). Mesurer pour comprendre les dynamiques territoriales et nourrir les politiques locales. Géographie, Économie, Société, 15, 345–364. doi:10.3166/ges.15.345-364.

    Article  Google Scholar 

  34. Lehtonen, M. (2004). The environnemental-social interface of sustainable development: Capabilities, social capital, institutions. Ecological Economics, 49, 199–214. doi:10.1016/j.ecolecon.2004.03.019.

    Article  Google Scholar 

  35. Losa, F., Origoni, P., & Ritschard, G. (2005). Usage non classificatoire d’arbres de classification: Enseignements d’une analyse de la participation féminine en Suisse. Revue des Nouvelles Technologies de l’Information, 1, 7–18.

    Google Scholar 

  36. Mayer, H., & Knox, P. (2009). Pace of life and quality of life: The slow city charter. In M. J. Sirgy, R. Phillips, & D. Rahtz (Eds.), Community quality-of-life indicators: Best cases III (pp. 21–39). New York: Springer.

    Chapter  Google Scholar 

  37. Méda, D. (1995). Le travail. Une valeur en voie de disparition. Paris: Aubier – Flammarion.

    Google Scholar 

  38. Michelson, W. (2011). What makes an activity most enjoyable? Alternative ways of measuring subjective aspects of time-use. Social Indicators Research, 103(1), 77–91. doi:10.1007/s11205-010-9697-1.

    Article  Google Scholar 

  39. Observatoire de la décision publique. (2010). Etat des lieux. Pour de nouveaux indicateurs de richesse dans les Pays de la LoirePrésentation du projet, September.

  40. Observatoire de la vie familiale en Isère. (2015). Enquête 2015: Permettez-moi d’être le parent que je veux!. Accessed September 1, 2016.

  41. Ottaviani, F. (2015). Performativité des indicateurs, indicateurs alternatifs et transformation des modes de rationalisation. PhD dissertation in Economic Sciences, 18 September 2015, Université Pierre Mendès France, Grenoble.

  42. Pagan-Rodriguez, R. (2013). Being under time pressure: The case of workers with disabilities. Social Indicators Research, 114(3), 831–840. doi:10.1007/s11205-012-0175-9.

    Article  Google Scholar 

  43. Pentland, W. E., & Harvey, A. S. (2002). Time Use Research. In W. E. Pentland, A. S. Harvey, M. P. Lawton, & M. A. McColl (Eds.), Time use research in the social sciences (pp. 3–18). New York: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  44. Perret, B. (2003a). Indicateurs sociaux et théorie sociale. Revue du MAUSS, 21(1), 261–275. doi:10.3917/rdm.021.0261.

    Article  Google Scholar 

  45. Perret, B. (2003b). De la société comme monde commun. Paris: Desclée de Brouwer.

    Google Scholar 

  46. Proposition de loi visant à la prise en compte des nouveaux indicateurs richesse dans la définition des politiques publiques, 29 septembre 2014. Accessed September 16, 2016.

  47. Prouteau, L., & Wolff. (2002). La participation associative au regard des temps sociaux. Economie et statistique, 352–353. Accessed January 26, 2016.

  48. Reboud, V. (2008). Amartya Sen: Un économiste du développement? Agence Française de Développement. Accessed January 26, 2016.

  49. Renault, M. (2016). Une approche transactionnelle des démarches d’élaboration participative d’indicateurs sociétaux. La méthode du Conseil de l’Europe. Innovations, 49(1), 203–225.

    Google Scholar 

  50. Ricroch, L. (2012). En 25 ans, moins de tâches domestiques pour les femmes, l’écart de situation avec les hommes se réduit. Regard sur la paritéINSEE Références, [en ligne] Accessed January 26, 2016.

  51. Rosanvallon, P. (2008). La légitimité démocratique: Impartialité, réflexivité, proximité. Paris: Editions du Seuil.

    Google Scholar 

  52. Roy, D. (2009). L’évolution des temps sociaux à travers les enquêtes «emploi du temps». Informations sociales, 153(3), 8–11.

    Google Scholar 

  53. Sen, A. (1992). Repenser l’inégalité. (Translated in French by Chemla, P. Inequality Reexamined). Paris: Seuil, 2000 for the French edition.

  54. Spinney, J., & Millward, H. (2010). Time and money: A new look at poverty and the barriers to physical activity in Canada. Social Indicators Research, 99(2), 341–356. doi:10.1007/s11205-010-9585-8.

    Article  Google Scholar 

  55. Stiglitz, E., Sen, A., & Fitoussi, J. P. (2009). Report by the commission on the measurement of economic performance and social progress. Commission on the measurement. Accessed January 26, 2016.

  56. United Nations Development Programme (2014). Human Development Report 2014. Sustaining Human Progress Reducing Vulnerabilities and Building Resilience. Technical Notes. Accessed September 2, 2016.

  57. Venturi, R. (2015). Les nouveaux indicateurs de richesse, rapport du gouvernement. Accessed January 26, 2016.

  58. Viard, J., Potier, Fr, & Urbain, J.-D. (2002). La France des temps libres et des vacances. La Tour d’Aigue: Edition de l’Aube.

    Google Scholar 

  59. Viveret, P. (2014). Vivre à la bonne heure. Paris: Presses d’Ile-De-France.

    Google Scholar 

Download references


Thanks to Nicolas Galy (PPL, UGA) and Laura Guéorguiéva- Bringuier (PACTE, UGA) for their readings on an ealier version of the paper. Any mistakes are purely mine.

Author information



Corresponding author

Correspondence to Fiona Ottaviani.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ottaviani, F. Time in the Development of Indicators on Sustainable Wellbeing: A Local Experiment in Developing Alternative Indicators. Soc Indic Res 135, 53–73 (2018).

Download citation


  • Activity times
  • Social indicators
  • Well-being
  • Sustainability
  • Local experimentation