Social Indicators Research

, Volume 130, Issue 3, pp 1147–1163 | Cite as

An Alternative View on Distribution Keys for the Possible Relocation of Refugees in the European Union

  • Lars CarlsenEmail author


The major social and human problem today is the extreme number of refugees, e.g., politically determined, from various conflicts zone around the world. The European Union currently discusses the possible distribution and relocation of these refugees among the member states. The European Commission suggested keys to the distribution based on aggregated indicators, which for obvious reasons has its pitfalls. Here distribution keys based on a partial ordering approach is discussed. The choice of indicators apparently is crucial due to the relative importance of the single indicators. Two approaches are applied to derive distribution keys, both taking the onset in the average ordering of the 28 EU countries. In the first simple approach, independently of the choice of indicators among the here applied, five countries, i.e., Denmark, Germany, The Netherlands, Sweden and The United Kingdom consequently are found among the Top-10 countries that should receive the major parts of refugees. In a second approach, applying a normalization based on population size the bigger countries with fairly solid economies are suggested to receive the majority of accepted refugees. The eventual choice of indicators as well as the normalization process is a political discussion and is not part of the present study.


Refugees Distribution key Relocation Partial ordering Average order Indicator importance 


  1. Bruggemann, R., & Carlsen, L. (2011). An improved estimation of averaged ranks of partially orders. MATCH Communications in Mathematical and in Computer Chemistry, 65, 383–414.Google Scholar
  2. Bruggemann, R., & Carlsen, L. (2012). Multicriteria decision analyses. Viewing MCDA in terms of both process and aggregation methods: Some thoughts, motivated by the paper of Huang, Keisler and Linkov. Science of the Total Environment, 425, 293–295.CrossRefGoogle Scholar
  3. Bruggemann, R., & Carlsen, L. (2014). Incomparable—What now? MATCH Communications in Mathematical and Computer Chemistry, 71, 694–716.Google Scholar
  4. Bruggemann, R., & Carlsen, L. (2015a). Incomparable—What now II? Absorption of incomparabilities by a cluster-method. Quality and Quantity, 49, 1633–1645.CrossRefGoogle Scholar
  5. Bruggemann, R., & Carlsen, L. (2015b). Incomparable—What now III? Incomparabilities, elucidated by a simple version of ELECTRE III and a fuzzy partial order approach. MATCH Communications in Mathematical and Computer Chemistry, 73, 277–302.Google Scholar
  6. Brüggemann, R., & Carlsen, L. (2006). Introduction to partial order theory exemplified by the evaluation of sampling sites. In R. Brüggemann & L. Carlsen (Eds.), Partial order in environmental sciences and chemistry (pp. 61–110). Berlin: Springer.CrossRefGoogle Scholar
  7. Bruggemann, R., Carlsen, L., Voigt, K., & Wieland, R. (2014). PyHasse software for partial order analysis: Scientific background and description of selected modules. In R. Bruggemann, L. Carlsen, & J. Wittmann (Eds.), Multi-indicator systems and modelling in partial order (pp. 389–423). New York: Springer.CrossRefGoogle Scholar
  8. Bruggemann, R., Halfon, E., Welzl, G., Voigt, K., & Steinberg, C. (2001). Applying the concept of partially ordered sets on the ranking of near-shore sediments by a battery of tests. Journal of Chemical Information and Computer Sciences, 41, 918–925.CrossRefGoogle Scholar
  9. Brüggemann, R., Lerche, D., Sørensen, P. B., & Carlsen, L. (2004). Estimation of average ranks by a local partial order model. Journal of Chemical Information and Computer Sciences, 44, 618–625.CrossRefGoogle Scholar
  10. Brüggemann, R., & Münzer, B. (1993). A graph-theoretical tool for priority setting of chemicals. Chemosphere, 27, 1729–1736.CrossRefGoogle Scholar
  11. Brüggemann, R., & Patil, G. P. (2011). Ranking and prioritization for multi-indicator systems—Introduction to partial order applications. New York: Springer.CrossRefGoogle Scholar
  12. Brüggemann, R., & Voigt, K. (2008). Basic principles of hasse diagram technique in chemistry. Combinatorial Chemistry & High Throughput Screening, 11, 756–769.CrossRefGoogle Scholar
  13. Carlsen, L. (2015). Data analysis by partial order methodology. Chemical Bulletin of Kazakh National University,. doi: 10.15328/cb632.Google Scholar
  14. Carlsen, L., & Bruggemann, R. (2013). An analysis of the ‘Failed States Index’ by partial order methodology. Journal of Social Structure, 14(3), 1–32.Google Scholar
  15. Carlsen, L., & Bruggemann, R. (2014). The ‘Failed State Index’ offers more than just a simple ranking. Social Indicators Research, 115, 525–530.CrossRefGoogle Scholar
  16. Carlsen, L., & Bruggemann, R. (subm.) Partial ordering and metrology. Analyzing analytical performance.Google Scholar
  17. De Loof, K., De Meyer, H., & De Baets, B. (2006). Exploiting the lattice of ideals representation of a poset. Fundamenta Informaticae, 71, 309–321.Google Scholar
  18. EC. (2015a). European Council meeting (25 and 26 June 2015)—Conclusions, EUCO 22/15.Google Scholar
  19. EC. (2015b). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A European agenda on migration, COM(2015) 240 final.Google Scholar
  20. Ernesti, J., & Kaiser, P. (2008). Python—Das umfassende Handbuch. Bonn: Galileo Press.Google Scholar
  21. Eurostat. (2015a.) Resettled persons—Annual data. Accessed September, 2015.
  22. Eurostat. (2015b). Unemployment statistics. Accessed September, 2015.
  23. Fund for Peace. (2015) Fragile States Index. Accessed August, 2015.
  24. Hetland, M. L. (2005). Beginning Python—From novice to professional. Berkeley: Apress.Google Scholar
  25. Koppatz, P., & Brüggemann, R. (2013). PyHasse NG. In J. Wittmann & Müller M (Eds.), Simulation in Umwelt- und Geowissenschaften. Workshop Leipzig 2013 (pp. 305–311). Aachen: Shaker-Verlag.Google Scholar
  26. Langtangen, H. P. (2008). Python scripting for computational science. Berlin: Springer.CrossRefGoogle Scholar
  27. Moraga, J. F.-H., & Rapoport, H. (2014). Tradable refugee-admission quotas and EU Asylum policy, IZA Discussion Paper No. 8683, Forschungsinstitut zur Zukunft der Arbeit Institute for the Study of Labor. Accessed August, 2015.
  28. Morton, J., Pachter, L., Shiu, A., Sturmfels, B., & Wienand, O. (2009). Convex rank tests and semigraphoids. SIAM Journal on Discrete Mathematics, 23, 1117–1134.CrossRefGoogle Scholar
  29. Munda, G. (2008). Social multi-criteria evaluation for a sustainable economy. Berlin: Springer.CrossRefGoogle Scholar
  30. Myers, N. (2002). Environmental refugees: A growing phenomenon of the 21st century. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 357(1420), 609–613.CrossRefGoogle Scholar
  31. Prakash, B. Whither go climate refugees? Eco walk the talk. Dec. 6th, 2010. Accessed September, 2015.
  32. Sørensen, P. B., Mogensen, B. B., Carlsen, L., & Thomsen, M. (2000). The infuence on partial order ranking from input parameter uncertainty. Definition of a robustness parameter. Chemosphere, 41, 595–601.CrossRefGoogle Scholar
  33. Sportlight. (2015). EU Ministers agree to relocate 32,000 refugees. Accessed September, 2015.
  34. The Free Dictionary. (2015). Tied rank. Accessed September, 2015.
  35. UNHCR. (2010). Convention and protocol relating to the status of refugees. Accessed September 2015.
  36. UNHCR. (2011). The 1951 convention relating to the status of refugees and its 1967 protocol. Accessed September, 2015.
  37. UNHCR. (2015). 2015 UNHCR regional operations profile—Europe. Accessed September, 2015.
  38. Voigt, K., & Brüggemann, R. (1995). Toxicology databases in the metadatabank of online databases. Toxicology, 100, 225–240.CrossRefGoogle Scholar
  39. Weigend, M. (2006). Objektorientierte Programmierung mit Python. Bonn: mitp-Verlag.Google Scholar
  40. Wienand, O. (2006). Lcell. Accessed September, 2015.
  41. World Bank. (2015a). The little green data book 2015. Washington, DC: World Bank.CrossRefGoogle Scholar
  42. World Bank. (2015b). Adjusted net national income. Accessed September, 2015.

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Awareness CenterRoskildeDenmark

Personalised recommendations