Long Term Trends in Life Satisfaction, 1973–2012: Flanders in Europe


In this paper we focus on temporal heterogeneity of overall life satisfaction. Using repeated Eurobarometer Surveys from the period 1973–2012 and multilevel hierarchical age period cohort regression, trend, life-cycle and cohort effects are disentangled. In Flanders, the trend fluctuations are stronger than the life-cycle effects and there are hardly any generation effects. In other countries, by contrast, there are few or no trend fluctuations, but rather signs of a generational change. The international heterogeneity is particularly large and these international differences are stronger than the temporal ones. It remains unclear what factors from the macro-context lie at the basis of the observed international differences.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    NUTS (Nomenclature des Unités Territoriales Statistiques) is a system for the division of the territory of the European Union, the so-called NUTS regions. NUTS 1 regions contain 3–7 million inhabitants.

  2. 2.

    The trend variables have been harmonized with respect to variable names, variable and value labels, coding over time and weighting factors.

  3. 3.

    Luxembourg is not included in the analysis because of the low number of respondents.

  4. 4.

    Thalidomide, popular with pregnant women at the end of the 1950s as a cure for morning sickness and as a sedative, caused about 10,000 newborns to have serious defects such as missing or underdeveloped limbs.

  5. 5.

    The estimated period effects equal the sum of the intercept and the period-specific random effect.


  1. Blanchflower, D., & Oswald, A. (2004). Well-being over time in Britain and the USA. Journal of Public Economics, 88, 1359–1386.

    Article  Google Scholar 

  2. Callens, M., & Croux, C. (2005). Performance of likelihood-based estimation methods for multilevel binary regression models. Journal of Statistical Computation and Simulation, 75(12), 1003–1017.

    Article  Google Scholar 

  3. Commission of the European Communities. (2009). GDP and beyond. Measuring progress in a changing world. Communication from the Commission to the Council and the European Parliament. Brussels: Commission of the European Communities

  4. Corijn, M. (2010). Als we maar gezond zijn!? Het belang en de betekenis van de gezondheidsbeleving in Vlaanderen. In D. Verlet, & M. Callens (Eds.), De kwaliteit van het leven, een mozaïek van het dagelijks leven. Brussel: Studiedienst van de Vlaamse Regering.

  5. Davis, J. (1984). New money, an old man/lady and ‘Two’s company’: Subjective Welfare in the NORC General Social Surveys, 1972–1982. Social Indicators Research, 15, 319–350.

    Article  Google Scholar 

  6. Easterlin, R. (1987). Birth and fortune: The impact of numbers on personal welfare. Chicago: University of Chicago.

    Google Scholar 

  7. Easterlin, R. (1995). Will raising the income of all increase the happiness of all? Journal of Economic Behaviour and Organisation, 27, 35–48.

    Article  Google Scholar 

  8. Elder, R. (1974). Children of the great depression: Social change in life experience. Chicago: The University of Chicago Press.

    Google Scholar 

  9. Ferrer-i-Carbonell, A., & Frijters, P. (2004). How important is methodology for the estimates of the determinants of happiness? Economic Journal, 114, 641–659.

    Article  Google Scholar 

  10. Goldstein, H. (2003). Multilevel statistical models. New York: Wiley.

    Google Scholar 

  11. Gove, W., Ortega, S., & Style, C. (1989). The maturational and role perspectives on aging and self through the adult years: An empirical evaluation. Americal Journal of Sociology, 94, 1117–1145.

    Article  Google Scholar 

  12. Hall, J., Giovannini, E., Morrone, A., & Ranuzzi, G. (2010). A framework to measure the progress of societies. OECD Statistics Directorate working paper no. 34. Paris: OECD.

  13. Huebner, E., & Dew, D. (1996). The interrelationships of positive affect, negative effect and life satisfaction in an adolescent sample. Social Indicators Research, 38(2), 129–137.

    Article  Google Scholar 

  14. Li, B., Lingsma, H. F., Steyerberg, E. W., & Lesaffre, E. (2011). Logistic random effects regression models: A comparison of statistical packages for binary and ordinal outcomes. BMC Medical Research Methodology. doi:10.1186/1471-2288-11-77.

    Google Scholar 

  15. Pittau, M., Zelli, R., & Gelman, A. (2010). Economic disparities and life satisfaction in European regions. Social Indiactors Research, 96(2), 339–361.

    Article  Google Scholar 

  16. Raudenbush, S., & Bryk, A. (2002). Hierarchical linear models: Applications and data analysis methods. Thousand Oaks: Sage.

    Google Scholar 

  17. Rodgers, W. (1982). Trends in reported happiness within demographically defined subgroups, 1957–78. Social Forces, 60, 826–842.

    Article  Google Scholar 

  18. Ryder, N. B. (1965). The cohort as a concept in the study of social change. American Sociological Review, 30, 843–861.

    Article  Google Scholar 

  19. Schmitt, H., Scholz, E., Leim, I., & Moschner, M. (2008). The Mannheim Eurobarometer Trend File 19702002 (ed. 2.00). European Commission [Principal investigator]. Cologne: GESIS Data Archive. ZA3521 Data file Version 2.0.1. doi:10.4232/1.10074.

  20. Schmitt, H., Scholz, E., Leim, I., & Moschner, M. (2009). The Mannheim Eurobarometer Trendfile 19702002. Data Set Edition 2.01. Codebook and unweighted frequency distributions. Updated Version. Cologne: GESIS Data Archive.

  21. Schmotkin, D. (1990). Subjective well-being is a function of age and gender: A multivariate look for differentiated trends. Social Indicators Research, 23, 201–230.

    Article  Google Scholar 

  22. Snijders, T., & Bosker, R. (1999). Multilevel analysis: An introduction to basic and advanced multilevel modeling. London: Sage Publishers.

    Google Scholar 

  23. Stiglitz, J. E., Sen, A. & Fitoussi, J. (2009). Report by the commission on the measurement of economic performance and social progress. http://stiglitz-sen-fitoussi.fr/documents/rapport_anglais.pdf.

  24. Van den Noortgate, W., De Boeck, P., & Meulders, M. (2003). Cross-classification multilevel logistic models in psychometrics. Journal of Educational and Behavioral Statistics, 28(4), 369–386.

    Article  Google Scholar 

  25. Veenhoven, R. (1984). Conditions of happiness. Dordrecht: Kluwer Academic.

    Google Scholar 

  26. Veenhoven, R. (1996). Developments in satisfaction research. Social Indicators Research, 37(1), 1–46.

  27. Veenhoven, R. (2002). Het grootste geluk voor het grootste aantal. Sociale Wetenschappen, 4, 1–43.

    Google Scholar 

  28. Veenhoven, R. (2004). World database of happiness: Continuous register of subjective appreciation of life. In W. Glatzer, S. VonBelow, & M. Stoffregen (eds.), Challenges for quality of life in the contemporary world: Advances in quality-of-life studies, theory and research. Social indicators research series, 24. Dordrecht: Kluwer Academic Publishers.

  29. Veenhoven, R. (2005). Trend average happiness in nations 19462004: How much people like the life they live. World Database of Happiness. Trend Report 2005-1d.

  30. Veenhoven, R. (2009). Trends inequality-adjusted happiness in nations 19462008: How well nations combine a high level of happiness with an equitable distribution. World database of happiness. Trend Report 2009-4. http://www.worlddatabaseofhappiness.eur.nl/hap_nat/findinreports/list_of_report.htm.

  31. Verlet, D., & Callens, M. (2010a). De kwaliteit van het leven in het vizier van het beleid. Een inleidende situering. In D. Verlet, & M. Callens (Eds.), De kwaliteit van het leven, een mozaïek van het dagelijks leven. Brussel: Studiedienst van de Vlaamse Regering.

  32. Verlet, D., & Callens, M. (2010b). De contente Vlaming. Algemene levenstevredenheid bij de doorsnee bevolking in Vlaanderen. In D. Verlet, & M. Callens (Eds.), De kwaliteit van het leven, een mozaïek van het dagelijks leven. Brussel: Studiedienst van de Vlaamse Regering.

  33. Yang, Y. (2008). Social inequalities in happiness in the United States, 1972 to 2004: An age–period–cohort analysis. American Sociological Review, 73, 204–226.

    Article  Google Scholar 

  34. Yang, Y., & Land, K. (2006). A mixed models approach to the age–period–cohort analysis of repeated cross-section surveys, with an application to data on trends in verbal test scores. Sociological Methodology, 36, 75–97.

    Article  Google Scholar 

  35. Yang, Y., & Land, K. (2008). Age–period–cohort analysis of repeated cross-section surveys: Fixed or random effects? Sociological Methods and Research, 36, 297–326.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Marc Callens.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Callens, M. Long Term Trends in Life Satisfaction, 1973–2012: Flanders in Europe. Soc Indic Res 130, 107–127 (2017). https://doi.org/10.1007/s11205-015-1134-z

Download citation


  • Overall life satisfaction
  • Eurobarometer 1973–2012
  • Multilevel hierarchical age period cohort regression
  • Long term trend
  • Flanders
  • Europe