Skip to main content

Peasants’ Poverty and Inequality in Angola

Abstract

This paper analyses peasants’ poverty and inequality in Angola from 2004 to 2013 using a spatial panel data model. Peasant farming is the most common economic activity in Africa. Therefore the relationship between this economic activity (peasant farming), poverty and inequality is investigated. Other covariates include public expenditure, access to education and medical services and agricultural non-governmental organization that help peasants in Angola. Several spatial models are adopted, first a spatial Durbin model, then the spatial error model, the spatial autoregressive model and finally a spatial model with endogeneity, the Arellano–Bover (J Econom 68:29–51, 1995) spatial system panel model. The results reveal that spatial autocorrelation occurs in Angola and peasants are affected by inequality but not by poverty. The paper is not comparable with analysis of peasants in Africa because it adopts a spatial analysis. Moreover, the positive but statistically insignificant relationship with poverty means that there is no correlation between peasantry and poverty but there is a negative correlation between the Gini coefficient and peasantry.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Ahluwalia, M. S., Carter, N., & Chenery, H. (1979). Growth and poverty in developing countries. Journal of Development Economics, 6, 299–341.

    Article  Google Scholar 

  2. Andzie-Quainoo, L., & Grier, R. (2014). Tropical agriculture: Is Africa different? Review of Development Economics, 18(4), 640–654.

    Article  Google Scholar 

  3. Anselin, L. (1988). Spatial econometrics: Methods and models. Boston: Kluwer Academic Publishers.

    Book  Google Scholar 

  4. Anyanwu, J. C. (2005). Rural poverty in Nigeria: Profile, determinants and exit paths. Review of African Development, 17(3), 435–460.

    Article  Google Scholar 

  5. Arellano, M., & Bover, O. (1995). Another look at the instrumental variable estimation of error-components models. Journal of Econometrics, 68, 29–51.

    Article  Google Scholar 

  6. Barros, C. P., Alana, L. G., & Faria, J. R. (2015). The macroeconomy of Angola: Breaks and persistence in Angolan macro data. Applied Economics, 47(27), 2783–2802.

    Article  Google Scholar 

  7. Barros, C. P., Faria, J. R., & Araújo, A. F, Jr. (2012). Brazilian land tenure conflicts: A spatial analysis. Journal of International Development, 26, 409–421.

    Article  Google Scholar 

  8. Barros, C. P., & Gil-Alana, L. A. (2013). Inflation forecasting in Angola: A fractional approach. African Development Review, 25, 91–104.

    Article  Google Scholar 

  9. Bernstein, H. (2015). African peasants and revolution’ revisited. Journal of Peasants Studies, 41(S1), S95–S107.

    Google Scholar 

  10. Bowden, S., Chiripanhura, B., & Mosley, P. (2008). Measuring and explaining poverty in six African countries: A long-period approach. Journal of International Development, 20(8), 1049–1079.

    Article  Google Scholar 

  11. Croppenstedt, A., Demeke, M., & Meschi, M. M. (2003). Technology adoption in the presence of constraints: The case of fertilizer demand in Ethiopia. Review of Development Economics, 7(1), 58–70.

    Article  Google Scholar 

  12. Cuñado, J., & Gracia, F. P. (2012). Does education affect happiness? Evidence for Spain. Social Indicators Research, 108(1), 185–196.

    Article  Google Scholar 

  13. Datt, G., & Ravallion, M. (1997). Macroeconomic crises and poverty monitoring: A case study for India. Review of Development Economics, 1(2), 135–152.

    Article  Google Scholar 

  14. Davids, Y. D., & Gouws, A. (2013). Monitoring perceptions of the causes of poverty in South Africa. Social Indicators Research, 110(3), 1201–1220.

    Article  Google Scholar 

  15. Desmarais, A. A. (2002). PEASANTS SPEAK—The Vía Campesina: Consolidating an international peasant and farm movement. Journal of Peasants Studies, 29(2), 91–124.

    Article  Google Scholar 

  16. Diepart, J. C., & Dupuis, D. (2014). The peasants in turmoil: Khmer Rouge, state formation and the control of land in northwest Cambodia. Journal of Peasants Studies, 41(4), 445–468.

    Article  Google Scholar 

  17. Dinerman, A. (2001). Peasants and State in Mozambique. Journal of Peasants Studies, 28(3), 143–154.

    Article  Google Scholar 

  18. Duclos, J. Y., & Verdier Chouchane, A. (2011). Analyzing pro-poor growth in Southern Africa: Lessons from Mauritius and South Africa. African Development Review, 23(2), 121–146.

    Article  Google Scholar 

  19. Greene, W. (2008). Econometric analysis (6th ed.). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  20. Hall, R. (2012). The next Great Trek? South African commercial farmers move north. Journal of Peasants studies, 39(3–4), 823–843.

    Article  Google Scholar 

  21. Harris, L. (1980). Agricultural co-operatives and development policy in Mozambique. Journal of Peasants Studies, 7(3), 338–352.

    Article  Google Scholar 

  22. Highs, N. T. (2007). Measuring and understanding the well-being of South Africans: Everiday quality of Africa in South Africa. Social Indicators Research, 81(2), 331–356.

    Article  Google Scholar 

  23. Hobsbawm, E. J. (2008). Peasants and politics. Journal of Peasants Studies, 1(1), 3–22.

    Article  Google Scholar 

  24. Jollife, D., Datt, G., & Sharma, M. (2004). Robust poverty and inequality measurement in Egypt: Correcting for spatial-price variation and sample deign effects. Review of Development Economics, 8(4), 557–572.

    Article  Google Scholar 

  25. Kolenikov, S., & Sorrocks, A. (2005). A decomposition analysis of regional poverty in Russia. Review of Development Economics, 9(1), 24–46.

    Article  Google Scholar 

  26. Kristjanson, P., Mango, N., Khrisna, A., Radeny, M., & Johnson, N. (2010). Understanding poverty dynamics in Kenya. Journal of International Development, 22, 978–996.

    Article  Google Scholar 

  27. LeSage, J. (2005). Spatial econometrics. In K. Kempf-Leonard (Ed.), The encyclopedia of social measurement (Vol. 3, pp. 613–619). Netherlands: Elsevier.

    Chapter  Google Scholar 

  28. Levine, S., & Roberts, B. (2013). Robust estimates of changes in poverty and inequality in post-independency Namibia. South African Journal of Economy, 8(2), 167–191.

    Article  Google Scholar 

  29. Lewis, A. (1954). Economic development with unlimited supplies of labour. Manchester School of Economics and Social Studies, 22(2), 400–449.

    Article  Google Scholar 

  30. Martins, J. H. (2007). Household budget as a social indicator of poverty and inequality in South Africa. Social Indicators Research, 81(2), 203–221.

    Article  Google Scholar 

  31. Misturelli, F., & Heffernan, C. (2012). The shape of change: A memetic analysis of definitions of poverty from 1970s to the 2000s. Journal of International Development, 24(S1), S3–S18.

    Article  Google Scholar 

  32. Mosley, P., & Suleiman, A. (2007). Aid, agriculture and poverty in developing countries. Review of Developing Economies, 11(1), 139–158.

    Article  Google Scholar 

  33. Mussa, R. (2014). Impact of fertility in objective and subjective poverty in Malawi. Development Studies Research, 1(1), 202–222.

    Article  Google Scholar 

  34. Raman, S. (2006). Development, democracy and the NGO sector: Theory and evidence from Bangladesh. Journal of Developing Societies, 22(4), 451–473.

    Article  Google Scholar 

  35. Rogan, M. (2013). Poverty and headship in post-apartheid South Africa, 1997–2006. Social Indicators Research, 113(1), 491–511.

    Article  Google Scholar 

  36. Rogan, M. (2015). Gender and multidimensional poverty in South Africa: Applying the global multidimensional poverty index (MPI). Social Indicators Research,. doi:10.1007/s11205-015-0937-2.

    Google Scholar 

  37. Saul, J. S. (1974). African peasants and revolution. Review of African Political Economy, 1(1), 41–68.

    Article  Google Scholar 

  38. Saul, J. S., & Leys, C. (1999). Sub-Saharan Africa in global capitalism. Monthly Review, 51(3), 13–30.

    Article  Google Scholar 

  39. Savoia, A., Easaw, J., & Mckay, A. (2010). Inequality, democracy and institutions: A critical review of the literature. World Development, 38(2), 142–154.

    Article  Google Scholar 

  40. Sindzingre, A. (2012). The impact of the 2008–2009 crisis on commodity-dependent low-income African countries: Confirming the relevance of the concept of poverty trap. Journal of International Development, 24, 989–1007.

    Article  Google Scholar 

  41. Tobler, W. R. (1970). A computer movie simulating urban growth in the Detroit region. Economic Geography, 46, 234–240.

    Article  Google Scholar 

  42. Willems, W. (2004). Peasant demonstrators, violent invaders: Representations of land in the Zimbabwean Press. World Development, 32(10), 1767–1783.

    Article  Google Scholar 

  43. Windmeijer, F. (2000). A finite sample correction for the variance of linear two step GMM estimation. Institute of Fiscal Studies, Working paper series n° w00019. London.

  44. Yao, S. (1996). The determinants of cereal crop productivity of the peasant farm sector in Ethiopia, 1981–87. Journal of International Development, 8(1), 69–82.

    Article  Google Scholar 

Download references

Acknowledgments

Research carried out with the support of the Calouste Gulbenkian Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Otavio Henrique dos Santos Figueiredo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Barros, C.P., Figueiredo, O.d. & Wanke, P.F. Peasants’ Poverty and Inequality in Angola. Soc Indic Res 128, 751–761 (2016). https://doi.org/10.1007/s11205-015-1055-x

Download citation

Keywords

  • Angola
  • Peasants
  • Poverty
  • Inequality