Skip to main content


Log in

Human Development Index Based on ELECTRE TRI-C Multicriteria Method: An Application in the City of Recife

  • Published:
Social Indicators Research Aims and scope Submit manuscript


The Human Development Index (HDI) is an indicator that measures individuals’ welfare through three dimensions: health, education and income. Since its conception, the HDI has been a focus of attention for various segments of society such as politicians, professionals in the media, policy makers, academics and ordinary citizens. The index, however, has received several criticisms over the years, the compensatory effect between the dimensions being the main one. In this context, this paper puts forward an alternative approach for calculating the Municipal Human Development Index, thereby mitigating some criticisms of the index and supporting public decision making. For this purpose, the ELECTRE TRI-C multicriteria method was used, in order to attenuate the compensatory effect, to reduce calculation problems and to allow comparison year by year. An application was conducted in the city of Recife, Pernambuco, in order to demonstrate the benefits of the proposed approach. As a result, a more adequate classification of the regions in four levels of human development was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others


  • Agostini, S. J., & Richarson, S. J. (1997). A Human Development Index for U.S. Cities: Methodological issues and preliminary findings. real state. Economics, 25(1), 13–41.

    Google Scholar 

  • Almeida-Dias, J., Figueira, J. R., & Roy, B. (2010). Electre Tri-C: A multiple criteria sorting method based on characteristic reference actions. European Journal of Operational Research, 204(3), 565–580.

    Article  Google Scholar 

  • Anand, S., & Sen, A. (1994). Human Development Index: Methodology and measurement. Technical Report HDOCPA-1994-02. United Nations Development Programme. Accessed 02 October 2013.

  • Anand, S., & Sen, A. (2000). The income component of the Human Development Index. Journal of Human Development, 1(1), 83–106.

    Article  Google Scholar 

  • Belton, V., & Stewart, T. J. (2002). Multiple criteria decision analysis. Boston: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Bilbao-Ubillos, J. (2013). Another approach to measuring human development: The composite dynamic Human Development Index. Social Indicators Research, 111(2), 473–484.

    Article  Google Scholar 

  • Brazil. (1996). Lei no. 9.394 de 20 de Dezembro de 1996: Estabelece as Diretrizes e Bases da Educação Nacional. Presidência da República, Casa Civil, Subchefia para Assuntos Jurídicos. Accessed 13 October 2013.

  • Cahill, M. B. (2005). Is the Human Development Index redundant? Eastern Economic Journal, 31(1), 1–5.

    Google Scholar 

  • Chakravarty, S. R. (2011). A reconsideration of the tradeoffs in the new Human Development Index. The Journal of Economic Inequality, 9(3), 471–474.

    Article  Google Scholar 

  • Cherchye, L., Ooghe, E., & Puyenbroeck, T. V. (2011). Robust human development rankings. The Journal of Economic Inequality, 6(4), 287–321.

    Article  Google Scholar 

  • Das, S. (2008). Human well being: A decile group analysis on indian household data. Social Indicators Research, 87(3), 461–472.

    Article  Google Scholar 

  • Figueira, J., Mousseau, V., & Roy, B. (2005). ELECTRE methods. In J. Figueira, S. Greco, & M. Ehrgott (Eds.), Multiple criteria decision analysis: State of the art surveys (pp. 133–156). Boston: Springer.

    Chapter  Google Scholar 

  • Figueira, J., & Roy, B. (2002). Determining the weights of criteria in the ELECTRE type methods with a revised Simos’ procedure. European Journal of Operational Research, 139(2), 317–326.

    Article  Google Scholar 

  • Gill, P., & Hall, P. (1997). Playing numbers Or politics? Approaches to the prioritization of development needs in South Africa. Social Indicators Research, 41(1–3), 251–278.

    Google Scholar 

  • Grimm, M., Harttgen, K., Klasen, S., & Misselhorn, M. (2008). A Human Development Index by income groups. World Development, 36(12), 2527–2546.

    Article  Google Scholar 

  • Hagerty, M. R., Cummins, R. A., Ferriss, A. L., Land, K., Michalos, A. C., Peterson, M., et al. (2001). Quality of Life Indexes for national policy: Review and agenda for research. Social Indicators Research, 55(1), 1–96.

    Article  Google Scholar 

  • Harttgen, K., & Klasen, S. (2012). A household-based Human Development Index. World Development, 40(5), 878–899.

    Article  Google Scholar 

  • Hoyland, B., Moene, K., & Willumsen, F. (2012). The tyranny of International Index Rankings. Journal of Development Economics, 97(1), 1–14.

    Article  Google Scholar 

  • Indrayan, A., Wysocki, M. J., Chawla, A., Kumar, R., & Singh, N. (1999). 3-Decade trend in Human Development Index in India and Its major states. Social Indicators Research, 46(1), 91–120.

    Article  Google Scholar 

  • Institute of Applied Economic Research. (2006). Radar Social 2006: Condições de Vida no Brasil. Report. Directory of Social Studies. Accessed 07 October 2013.

  • Ivanova, I., Arcelus, F. J., & Srinivasan, G. (1999). An assessment of the measurement properties of the Human Development Index. Social Indicators Research, 46(2), 157–179.

    Article  Google Scholar 

  • Kelley, A. C. (1991). The Human Development Index: “Handle with Care”. Population and Development Review, 17(2), 315–324.

    Article  Google Scholar 

  • Klugman, J., Rodríguez, F., & Choi, H. J. (2011). The HDI 2010: New controversies. Old Critiques. Journal of Economics Inequality, 9(2), 249–288.

    Article  Google Scholar 

  • Lind, N. (2010). A calibrated Index of Human development. Social Indicators Research, 98(2), 301–319.

    Article  Google Scholar 

  • Lopez-Calva, L. F., & Ortiz-Juarez, E. (2012). A household-based distribution-sensitive Human Development Index: An empirical application to Mexico Nicaragua and Peru. Social Indicators Research, 109(3), 395–411.

    Article  Google Scholar 

  • McGillivray, M. (1991). The Human Development Index: Yet another redundant composite development indicator? World Development, 19(10), 1461–1468.

    Article  Google Scholar 

  • Mousseau, V., & Slowinski, R. (1998). Inferring an ELECTRE TRI model from assignment examples. Journal of Global Optimization, 12(2), 157–174.

    Article  Google Scholar 

  • Munda, G. (2012). Choosing aggregation rules for composite indicators. Social Indicators Research, 109(3), 337–354.

    Article  Google Scholar 

  • Murray, C. J. L. (1991). Development data constraints and the Human Development Index. Discussion Paper No. 25. United Nations Research Institute for Social Development. Accessed 04 October 2013.

  • Noorbakhsh, F. (1998). The Human Development Index: Some technical issues and alternative indices. Journal of International Development, 10(5), 589–605.

    Article  Google Scholar 

  • Pagliani, P. (2010). Influence of Regional, National and Sub-national HDRs. Human Development Research Paper 2010/19. United Nations Development Programme. Accessed 01 October 2013.

  • Prefeitura do Recife (2005). Atlas of Human Development in Recife. Atlas. Recife City Hall and UNDP. Accessed 28 September 2013.

  • Ranis, G., Stewart, F., & Samman, E. (2006). Human development: Beyond the Human Development Index. Journal of Human Development, 7(3), 323–358.

    Article  Google Scholar 

  • Ravallion, M. (2011). The Human Development Index: A response to Klugman, Rodriguez and Choi. Journal of Economics Inequality, 9(3), 475–478.

    Article  Google Scholar 

  • Ravallion, M. (2012). Troubling tradeoffs in the Human Development Index. Journal of Development Economics, 99(2), 201–209.

    Article  Google Scholar 

  • Rende, S., & Donduran, M. (2013). Neighborhoods in development: Human Development Index and Self-organizing Maps. Social Indicators Research, 110(2), 721–734.

    Article  Google Scholar 

  • Roy, B. (1996). Multicriteria methodology for decision aiding. London: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Sagar, A. D., & Najam, A. (1998). The Human Development Index: A critical review. Ecological Economics, 25(3), 249–264.

    Article  Google Scholar 

  • Sant’Anna, A. P., Ribeiro, R. O. A., & Dutt-Ross, S. (2011). Employing the components of the Human Development Index to drive resources to educational policies. Social Indicators Research, 104(3), 523–532.

    Article  Google Scholar 

  • Silva, R., & Ferreira-Lopes, A. (2013). A Regional Development Index for Portugal. Social Indicators Research,. doi:10.1007/s11205-013-0455-z.

    Google Scholar 

  • Srinivasan, T. N. (2012). Human development: A new paradigm or reinvention of the wheel? American Economic Review, 84(2), 238–243.

    Google Scholar 

  • Stanton, E. A. (2007). The Human Development Index: A history. University of Massachusetts Amherst, Political Economy Research Institute. Accessed 04 October 2013.

  • Stapleton, L. M., & Garrod, G. D. (2007). Keeping things simple: Why the Human Development Index should not diverge from its equal weights assumption. Social Indicators Research, 84(2), 179–188.

    Article  Google Scholar 

  • Tokuyama, C., & Pillarisetti, J. R. (2009). Measuring and monitoring human welfare: How credible are the data in the UNDP’s human development reports? Journal of Economic and Social Measurement, 34(1), 35–50.

    Google Scholar 

  • United Nations Development Programme (UNDP). (1990). Concept and measurement of human development. Human Development Report. UNDP. Accessed 30 September 2013.

  • United Nations Development Programme (UNDP). (2000). National Human Development Report Bulgaria 2000; The Municipal Mosaic. Human Development Report. UNDP. Accessed 02 October 2013.

  • United Nations Development Programme (UNDP). (2011). Relatório do Desenvolvimento Humano; Sustentabilidade e Equidade: Um Futuro Melhor para Todos. Human Development Report. UNDP. Accessed 30 September 2013.

  • United Nations Educational, Scientific and Cultural Organization (UNESCO). (2011). EFA Global Monitoring Report; The Hidden Crisis: Armed Conflict and Education. Report. UNESCO. Accessed 10 October 2013.

  • Vincke, P. (1992). Multicriteria decision-aid. New York: Wiley.

    Google Scholar 

  • Wolff, H., Chong, H., & Auffhammer, M. (2011). Classification, detection and consequences of data error: Evidence from the Human Development Index. The Economic Journal, 121(553), 843–870.

    Article  Google Scholar 

  • Wu, P. C., Fan, C. W., & Pan, S. C. (2014). Does Human Development Index provide rational development rankings? Evidence from efficiency rankings in super efficiency model. Social Indicators Research, 116(2), 647–658.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Débora Viana e Sousa Pereira.


Appendix 1: Recife Human Development Units

Table 6 gives information about the Recife Human Development Units, showing their codes and the neighborhoods which are part of them.

Table 6 Recife Human Development Units

Appendix 2: ELECTRE TRI-C Method

This appendix offers additional information about ELECTRE TRI-C multicriteria method, such as its formulas.

The ELECTRE TRI-C is a sorting method that involves ordered classes and each one of these classes are represented for only one reference action. Basically, outranking relations between alternatives and reference actions are explored, with the intend to find suitable classes to each alternative. The method results in two classifications and these classifications must be analyzed together in the recommendation of the decision process.

The set of alternatives is denoted by A and must be known a priori. So, a set of alternatives \({\text{A}} = \{ {\text{a}}_{{1,}} {\text{a}}_{2} , \ldots ,{\text{a}}_{{\text{i}}} \}\) is given and should be distributed in completely ordered classes \(\{ {\text{C}}_{{1,}} \ldots ,{\text{C}}_{{\text{h}}} , \ldots ,{\text{C}}_{{\text{q}}} \}\), where \({\text{C}}_{1}\) is the worst class and \({\text{C}}_{\text{q}}\) is the best. The objective of the method is assign the alternatives to the set of classes, according to a set of criteria \({\text{F}} = \{ {\text{g}}_{1} , \ldots ,{\text{g}}_{{\text{j}}} , \ldots ,{\text{g}}_{{\text{n}}} \}\). The set of criteria has a vector of weights that can be interpreted as a voting power, denoted as\({\text{w}}_{\text{j}}\), such that \({\text{w}}_{\text{j}} > 0,j = 1, \ldots , n\) and assuming\(\mathop \sum \nolimits_{{{\text{j}} = 1}}^{\text{n}} {\text{w}}_{\text{j}} = 1\).

The set of reference actions \({\text{B}} = \{ {\text{a}}_{0}^{\prime } ,{\text{a}}_{1}^{\prime } , \ldots ,{\text{a}}_{{\text{h}}}^{\prime } , \ldots ,{\text{a}}_{{\text{q}}}^{\prime } ,{\text{a}}_{{{\text{q}} + 1}}^{\prime } \}\) should be determined a priori too, and they represent the classes in which the alternatives will be distributed. Note that the number of reference actions is equal to \({\text{q}} + 2\) and actions \({\text{a}}_{0}^{\prime }\) and \({\text{a}}_{{{\text{q}} + 1}}^{\prime }\) represent the worst and the best performances in each criterion, respectively.

Firstly, the comprehensive concordance index \({\text{C}}\left( {a,a^{\prime } } \right)\) should be calculated, as shown in Eqs. 3 and 4, respectively. This index considers all criteria in which the relation a outranks a′ is valid. Equation 3 involves the preference threshold (\({\text{p}}_{\text{j}}\)) and the indifference threshold (\({\text{q}}_{\text{j}}\)).

$${\mathbf{C}}_{{\mathbf{j}}} \left( {{\mathbf{a}},{\mathbf{a}}^{'} } \right) = \left\{ {\begin{array}{*{20}l} 0 \hfill & {{\text{if}}\quad {\mathbf{g}}_{{\mathbf{j}}} \left( {{\mathbf{a}}^{'} } \right) - {\mathbf{g}}_{{\mathbf{j}}} \left( {\mathbf{a}} \right) \ge {\mathbf{p}}_{{\mathbf{j}}} \left( {{\mathbf{a}}^{'} } \right),} \hfill \\ 1 \hfill & {{\text{if}}\quad {\mathbf{g}}_{{\mathbf{j}}} \left( {{\mathbf{a}}^{'} } \right) - {\mathbf{g}}_{{\mathbf{j}}} \left( {\mathbf{a}} \right) \le {\mathbf{q}}_{{\mathbf{j}}} \left( {{\mathbf{a}}^{'} } \right),} \hfill \\ {\frac{{{\mathbf{p}}_{{\mathbf{j}}} \left( {{\mathbf{a}}^{'} } \right) + {\mathbf{g}}_{{\mathbf{j}}} \left( {\mathbf{a}} \right) - {\mathbf{g}}_{{\mathbf{j}}} \left( {{\mathbf{a}}^{'} } \right)}}{{{\mathbf{p}}_{{{\mathbf{j}}}} \left( {{\mathbf{a}}^{'} } \right) - {\mathbf{q}}_{{\mathbf{j}}} \left( {{\mathbf{a}}^{'} } \right)}}} \hfill & {{\text{otherwise}}.} \hfill \\ \end{array} } \right.$$
$${\mathbf{C}}\left( {{\mathbf{a}},{\mathbf{a}}^{'} } \right) = \frac{{\mathop \sum \nolimits_{{{\mathbf{j}} \in {\mathbf{F}}}} {\mathbf{w}}_{{\mathbf{j}}} {\mathbf{C}}_{{\mathbf{j}}} \left( {{\mathbf{a}},{\mathbf{a}}^{'} } \right)}}{{\mathop \sum \nolimits_{{{\mathbf{j}} \in {\mathbf{F}}}} {\mathbf{w}}_{{\mathbf{j}}} }}$$

Subsequently, the partial discordance index \({\text{d}}_{\text{j}} (a,a^{\prime } )\) must be calculated, as shown in Eq. 5. This index considers all criteria against the affirmation a outranks a′, and take in account the veto threshold (\({\text{v}}_{\text{j}}\)).

$${\mathbf{d}}_{{\mathbf{j}}} \left( {{\mathbf{a}},{\mathbf{a}}^{'} } \right) = \left\{ {\begin{array}{*{20}l} 1 \hfill & {{\mathbf{if}}\quad {\mathbf{g}}_{{\mathbf{j}}} \left( {\mathbf{a}} \right) - {\mathbf{g}}_{{\mathbf{j}}} \left( {{\mathbf{a}}^{'} } \right) < - {\mathbf{v}}_{{\mathbf{j}}} ,} \hfill \\ {\frac{{{\mathbf{g}}_{{\mathbf{j}}} \left( {\mathbf{a}} \right) - {\mathbf{g}}_{{\mathbf{j}}} \left( {{\mathbf{a}}^{'} } \right) + {\mathbf{p}}_{{\mathbf{j}}} }}{{{\mathbf{p}}_{{{\mathbf{j}}}} - {\mathbf{v}}_{{\mathbf{j}}} }}} \hfill & {{\mathbf{if}}\quad - {\mathbf{v}}_{{\mathbf{j}}} \le {\mathbf{g}}_{{\mathbf{j}}} \left( {\mathbf{a}} \right) - {\mathbf{g}}_{{\mathbf{j}}} \left( {{\mathbf{a}}^{'} } \right) < - {\mathbf{p}}_{{\mathbf{j}}} ,} \hfill \\ 0 \hfill & {{\mathbf{if}}\quad {\mathbf{g}}_{{\mathbf{j}}} \left( {\mathbf{a}} \right) - {\mathbf{g}}_{{\mathbf{j}}} \left( {{\mathbf{a}}^{'} } \right) \ge - {\mathbf{p}}_{{\mathbf{j}}} .} \hfill \\ \end{array} } \right.$$

After, the credibility index σ(a,a′) can be measured as per Eq. 6. This index is intended to measure the strength of the assertion that alternative a outranks reference action a′,

$${\mathbf{\sigma }}\left( {{\mathbf{a}},{\mathbf{a}}^{'} } \right) = {\mathbf{c}}\left( {{\mathbf{a}},{\mathbf{a}}^{'} } \right)\mathop \prod \limits_{{{\mathbf{j}} = 1}}^{{\mathbf{n}}} {\mathbf{T}}_{{\mathbf{j}}} ({\mathbf{a}},{\mathbf{a}}^{'} ),\quad {\text{where}}\,{\text{T}}_{{\text{j}}} \left( {{\text{a}},{\text{a}}^{\prime } } \right) = \left\{ {\begin{array}{*{20}l} {\frac{{1 - {\text{d}}_{{\text{j}}} ({\text{a}},{\text{a}}^{\prime } )}}{{1 - {\text{c}}_{{\text{j}}} {\text{}}({\text{a}},{\text{a}}^{\prime } )}}} & {{\text{if}}\quad {\text{d}}_{{\text{j}}} (a,a^{\prime } ) > {\text{c}}_{{\text{j}}} (a,a^{\prime } )} \\ 1 & {{\text{otherwise}}} \\ \end{array} } \right.$$

Given the credibility index, a credibility level, denoted by λ, should be defined, representing the minimum value of σ(a,a′) in order to validate or not the outranking relation.

The recommendation of the ELECTRE TRI-C method is a classification, which is formed from two joint rules: descending and ascending. These classifications are made in accordance with the two procedures described below:

Descending rule: evaluating the worst to the best class, the first class \({\text{a}}_{\text{t}}^{\prime }\) that satisfies \(\upsigma\left( {{\text{a}},{\text{a}}_{\text{t}}^{\prime } } \right) \ge {\lambda }\) must be found. Given t:

  • For \({\text{t}} = {\text{q}}\), select \({\text{C}}_{\text{q}}\) as a possible class to which to assign alternative a.

  • For \(0 < {\text{t}} < q\), if \(\uprho\left( {{\text{a}},{\text{a}}_{\text{t}}^{\prime } } \right) > \rho \left( {{\text{a}},{\text{a}}_{{{\text{t}} + 1}}^{\prime } } \right)\), select \({\text{C}}_{\text{t}}\) as a possible class to which to assign alternative a. Otherwise, select \({\text{C}}_{{{\text{t}} + 1}}\). Consider \(\uprho\left( {{\text{a}},{\text{a}}_{\text{k}}^{\prime } } \right) = {\text{min}}\left\{ {\upsigma\left( {{\text{a}},{\text{a}}_{\text{k}}^{\prime } } \right), \upsigma\left( {{\text{a}}_{\text{k}}^{\prime } ,{\text{a}}} \right)} \right\}\).

  • For \({\text{t}} = 0\), select \({\text{C}}_{1}\) as a possible class to which to assign alternative a.

Ascending rule: evaluating the best to the worst class, the first class \({\text{b}}_{\text{k}}\) that satisfies \(\upsigma\left( {{\text{a}}_{\text{k}}^{\prime } ,{\text{a}}} \right) \ge\uplambda\) must be found. Given k:

  • For \({\text{k}} = 1\), select \({\text{C}}_{1}\) as a possible class to which to assign alternative a.

  • For 1 < k < (q + 1), if \(\uprho\left( {{\text{a}},{\text{a}}_{\text{k}}^{\prime } } \right) > \rho \left( {{\text{a}},{\text{a}}_{{{\text{k}} - 1}}^{\prime } } \right)\), select \({\text{C}}_{\text{k}}\) as a possible class to which to assign alternative a. Otherwise, select \({\text{C}}_{{{\text{k}} - 1}}\). Consider \(\uprho({\text{a}},{\text{a}}_{\text{k}}^{\prime } ) = \hbox{min} \left\{ {\upsigma({\text{a}},{\text{a}}_{\text{k}}^{\prime } ),\upsigma({\text{a}}_{\text{k}}^{\prime } ,{\text{a}})} \right\}\).

  • For \({\text{k}} = ({\text{q}} + 1)\), select \({\text{C}}_{\text{q}}\) as a possible class to which to assign alternative a.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, D.V.S., Mota, C.M.M. Human Development Index Based on ELECTRE TRI-C Multicriteria Method: An Application in the City of Recife. Soc Indic Res 125, 19–45 (2016).

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: