Skip to main content
Log in

On Exact Statistical Properties of Multidimensional Indices Based on Principal Components, Factor Analysis, MIMIC and Structural Equation Models

  • Published:
Social Indicators Research Aims and scope Submit manuscript

Abstract

Recent empirical literature has seen many multidimensional indices emerge as well-being or poverty measures, in particular indices derived from principal components and various latent variable models. Though such indices are being increasingly and widely employed, few studies motivate their use or report the standard errors or confidence intervals associated with these estimators. This paper reviews the different underlying models, reaffirms their appropriateness in this context, examines the statistical properties of resulting indices, gives analytical expressions of their variances and establishes certain exact relationships among them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, T. W. (1984). An introduction to multivariate statistical analysis. New York: John Wiley and Sons.

    Google Scholar 

  • Balestrino, A., & Sciclone, N. (2000). Should we use functionings instead of income to measure well-being? Theory, and some evidence from Italy. Mimeo, University of Pisa.

  • Bartholomew, D. J., & Knott, M. (1999). Latent variable models and factor analysis. U.K.: Edward Arnold.

    Google Scholar 

  • Biswas, B., & Caliendo, F. (2002). A multivariate analysis of the human development index. Indian Economic Journal, 49(4), 96–100.

    Google Scholar 

  • Bollen, K. A. (1989). Structural equations with latent variables. New York: John Wiley & Sons.

    Google Scholar 

  • Browne, M. W. (1984). Asymptotically distribution-free methods for the analysis of covariance structures. British Journal of Mathematical and Staistical Psychology, 37, 62–83.

    Google Scholar 

  • Browne, M. W., & Arminger, G. (1995). Specification and estimation of mean - and covariance-structural models. In G. Arminger, C. C. Clogg, & M. E. Sobel (Eds.), Handbook of statistical modelling for the social and behavioral sciences (pp. 311–359). Newbury Park: Plenum Press.

    Google Scholar 

  • Di Tommaso, M. L. (2006). Measuring the well-being of children using a capability approach: An application to Indian data. Working Paper CHILD No. 05/2006, University of Turin.

  • Gouriroux, C., Monfort, A., & Trognon, A.(1984). Pseudo-maximum likelihood methods: Theory. Econometrica, 52, 681–700.

    Article  Google Scholar 

  • Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24, 417–441

    Article  Google Scholar 

  • Jöreskog, K. (1973). A general method for estimatimg a linear structural equation system. In A. S. Goldberger & O. D. Duncan (Eds.), Structural equation models in the social sciences. New York: Seminar Press.

    Google Scholar 

  • Jöreskog, K. (2002). Structural equation modelling with ordinal variables using LISREL. http://www.ssicentral.com/lisrel/ordinal.htm

  • Jöreskog, K., & Goldberger, A. (1975). Estimation of a model with multiple indicators and multiple causes of a single latent variable. Journal of the American Statistical Association, 70(351), 631–639.

    Google Scholar 

  • Klasen, S. (2000). Measuring poverty and deprivation in South Africa. Review of Income and Wealth, 46, 33–58.

    Article  Google Scholar 

  • Krishnakumar, J. (2007). Going beyond functionings to capabilities: An econometric model to explain and estimate capabilities. Journal of Human Development, 7, 39–63.

    Article  Google Scholar 

  • Krishnakumar, J., & Ballon, P. (2007). Estimating basic capabilities: A structural equation model applied to Bolivia. Working paper under review.

  • Kuklys, W. (2005). Amartya Sen’s capability approach: Theoretical insights and empirical applications. Berlin: Springer.

    Book  Google Scholar 

  • Lelli, S. (2001). Factor analysis vs. fuzzy sets theory: Assessing the influence of different techniques on Sen’s functioning approach. Center for Economic studies, K.U. Leuven.

  • Maasoumi, E., & Nickelsburg, G. (1988). Multidimensional measures of well-being and an analysis of inequality in the Michigan data. Journal of Business and Economic Statistics, 6(3), 327–334.

    Article  Google Scholar 

  • McGillivray, M. (2005). Measuring non-economic well-being achievement. Review of Income and Wealth, 51(2), 337–364.

    Article  Google Scholar 

  • Morris, M. D. (1979). Measuring the condition of the world’s poor: The physical quality of life index. New York: Pergamon.

    Google Scholar 

  • Muthen, B. (1984). A general structural equation model with dichotomous, ordered categorical and continuous latent indicators. Psychometrika, 49, 115–132.

    Article  Google Scholar 

  • Muthen, B. (2002). Beyond SEM: General latent variable modelling. Behaviormetrika, 29(1), 81–117.

    Article  Google Scholar 

  • Muthen, B. O. (1998-2004). Mplus technical appendices. Los Angeles, CA: Muthen & Muthen.

    Google Scholar 

  • Nagar, A. L., & Basu, S. (2001). Weighting socio-economic indicators of human development (a latent variable approach). New Delhi: National Institute of Public Finance and Policy.

    Google Scholar 

  • Noorbaksh, F. (2003). Human development and regional disparities in India. Discussion Paper, Helsinki: UN-WIDER.

  • Rahman, T., Mittelhammer, R. C., & Wandschneider, P. (2003). Measuring the quality of life across countries: A sensitivity analysis of well-being indices. In WIDER International Conference on Inequality, Poverty and Human Well-being, Helsinki, Finland

  • Ram, R. (1982). Composite indices of physical quality of life, basic needs fulfilment, and income: A principal component representation. Journal of Development Economics, 11, 227–247.

    Article  Google Scholar 

  • Schokkaert, E., & Lootehgem, L. (1990). Sen’s concept of the living standard applied to the Belgian unemployed. Recherches Economiques de Louvain, 56, 429–450.

    Google Scholar 

  • Sen, A. K. (1985). Commodities and capabilities. Amsterdam: North-Holland.

    Google Scholar 

  • Sen, A. K. (1999). Development as freedom. Oxford: Oxford University Press.

    Google Scholar 

  • Slottje, D. J (1991). Measuring the quality of life across countries. The Review of Economics and Statistics 73(4), 684–693.

    Article  Google Scholar 

  • Skrondal, A., & Rabe-Hesketh, S. (2004). Generalized latent variable modeling: Multilevel, longitudinal, and structural equation models. Boca Raton, U.S.A.: Chapman & Hall/CRC.

    Google Scholar 

  • UNDP (1990). Human Development Report (HDR). U.K.: Oxford University Press.

  • Wagle, U. (2005). Multidimensional poverty measurement with economic well-being, capability and social inclusion: A case from Kathmandu, Nepal. Journal of Human Development, 6(3), 301–328.

    Article  Google Scholar 

  • White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica, 50, 1–26.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaya Krishnakumar.

Appendices

Appendix A

1.1 Minimum Variance Unbiased Estimation of Factor Scores in the FA Model

We are interested in estimators of latent factors \(\hat{f}\) such that

$$ E(\hat{f}-f|f)= 0 $$

and

$$ V(\hat{f}-f) \,\, \hbox{is minimal}. $$

Let us denote the estimator as \(\hat{f} = C y. \) Then \(E(\hat{f}-f) = E(C(\Uplambda f + \varepsilon)-f) = (C\Uplambda - I) E(f) = 0\) implies the following condition:

$$ C\Uplambda = I $$

Thus we need to solve the following program:

Minimise \(V(\hat{f}-f)= (C\Uplambda - I) (C\Uplambda - I)^{\prime} + C\Uppsi C^{\prime}\) under the constraint

$$ C\Uplambda = I. $$

The Lagrangian is :

$$ \begin{array}{l} \pounds = tr[C\Uplambda-I) (C\Uplambda-I)^{\prime} + C\Uppsi C^{\prime}] - \rho^{\prime} \hbox{vec}(C\Uplambda-I)\\ = tr[C\Uplambda-I) (C\Uplambda-I)^{\prime} + C\Uppsi C^{\prime}] - \rho^{\prime} (\Uplambda^{\prime}\otimes I) \hbox{vec}C - \rho^{\prime} \hbox{vec} I \end{array} $$

Substituting the constraint in the objective function we get

$$ \pounds = tr C\Uppsi C^{\prime} - \rho^{\prime}(\Uplambda \otimes I) \hbox{vec} C- \rho^{\prime}\hbox{vec} I $$

The first order conditions are given by:

$$ (\Uppsi^{\prime}\otimes I) \hbox{vec} C - (\Uplambda \otimes I) \rho = 0 $$
$$ (\lambda^{\prime}\otimes I) \hbox{vec} C = 0 $$

Solving the above system, one obtains:

$$ \begin{array}{l} \rho^{\ast} = (\Uplambda^{\prime}\Uppsi^{-1} \Uplambda)^{-1}\\ C^{\ast}= (\Uplambda^{\prime}\Uppsi^{-1}\Uplambda)^{-1} \Uplambda^{\prime}\Uppsi^{-1} \end{array} $$

In the special case Ψ =  I, C * = (Λ′Λ)−1 Λ′ and \(\tilde{f} = C^{\ast}x = \Uptheta^{-\frac{1}{2}}A^{\prime}x = \Uptheta^{-\frac{1}{2}} p .\)

Appendix B

2.1 “Unbiased" Principal Components

If we require the first m principal components to be also unbiased estimators of the latent factors that they are supposed to represent then we should find B such that

$$ E(B A^{*^{\prime}}y-f|f)=0 \quad \hbox{i.e.} \,\, E((BA^{*^{\prime}}\Uplambda-I)f|f)=0 \quad \forall f. $$

This implies

$$ BA^{*^{\prime}}\Uplambda-I = 0 $$

or

$$ B A^{*^{\prime}}A^{\ast}\Uptheta^{\ast\frac{1}{2}}=I $$

or

$$ B\Uptheta^{\ast\frac{1}{2}}=I $$

or

$$ B= \Uptheta^{\ast-\frac{1}{2}} $$

Thus the ‘unbiased’ principal component estimator is given by

$$ p^{\ast\ast}=\Uptheta^{\ast-\frac{1}{2}}A^{\prime}x = \Uptheta^{\ast-\frac{1}{2}} p = \tilde{f}^{\ast}. $$

Appendix C

3.1 Expression of MIMIC Estimator

Following Jöreskog and Goldberger (1975), the conditional expectation of f given y,x is given by:

$$ \hat{f} = Bx + \Uplambda^{\prime}\Omega^{-1} ( y - \Uplambda B x) $$

where

$$ \Omega = \Uplambda \Uplambda^{\prime}+ \Uppsi $$

Using

$$(\Uplambda \Uplambda^{\prime}+ \Uppsi)^{-1} = \Uppsi^{-1} + \Uppsi^{-1} \Uplambda (I+\Uplambda^{\prime}\Uppsi^{-1} \Uplambda) ^{-1} \Uplambda^{\prime}\Uppsi^{-1} $$

we obtain

$$\hat{f} = [I - \Uplambda^{\prime}\Uppsi^{-1} \Uplambda + \Uplambda^{\prime}\Uppsi^{-1} \Uplambda (I+ \Uplambda^{\prime}\Uppsi^{-1} \Uplambda)^{-1} \Uplambda^{\prime}\Uppsi^{-1} \Uplambda] [Bx+\Uplambda^{\prime}\Uppsi^{-1}y] $$

which can be simplified to

$$ (I+ \Uplambda^{\prime}\Uppsi^{-1} \Uplambda)^{-1} (Bx + \Uplambda^{\prime}\Uppsi^{-1}y) $$

Appendix D

4.1 Latent Factor Estimators and Their Variances in the Linear SEM

As explained in the text, the latent factors are estimated as the expectation of the posterior distribution of these factors given the sample i.e. given y,x. For a pure measurement model (with exogenous variables w) written as

$$ \begin{aligned} y &= Dw+\Uplambda \eta+ \varepsilon\\ x &= \eta_x \end{aligned} $$
(14)

the latent factor (Empirical Bayes) estimator is derived in Skrondal and Rabe-Hesketh (2004) as follows:

$$ \hat{\eta} = V(\eta) \Uplambda^{\prime}\left(\Uplambda V(\eta) \Uplambda^{\prime}+\Uppsi \right)^{-1} (y-Dw) $$

Here we take the above formula and adapt it to our case in which we have a SEM for explaining the latent factors. Our model is reproduced below for reference:

$$ \begin{array}{l} Ay^{\ast}+Bx^{\ast}+u=0\\ y = \Uplambda y^{\ast} + \varepsilon \end{array} $$
(15)

with

$$ V(u) = \Upsigma $$

To make use of the above result we substitute the reduced form of our SEM given by

$$ y^{\ast}= A^{-1} B x + A^{-1} u $$

into the measurement equation (15) to get

$$ y = \Uplambda A^{-1} B x + \Uplambda A^{-1} u + \varepsilon $$
(16)

Identifying (16) with (14) and η with u one can obtain the ‘estimator’ of u as

$$ \hat{u} = \Upsigma A^{-1} \Uplambda^{\prime}(\Uplambda A^{-1} \Upsigma A^{-1^{\prime}} \Uplambda^{\prime}+\Uppsi)^{-1} (y-\Uplambda A^{-1} B x) $$

The factor estimators are then obtained by substituting \(\hat{u}\) for u in the SEM model (15):

$$ \hat{y}^{\ast}= A^{-1} B x + A^{-1} \Upsigma A^{-1} \Uplambda^{\prime}(\Uplambda A^{-1}\Upsigma A^{-1^{\prime}} \Uplambda^{\prime}+\Uppsi)^{-1} (y-\Uplambda A^{-1} B x) $$
(17)

which is the equation given in the text.

Finally, the variance of \(\hat{y}^*\) is derived by noting that

$$ y-\Uplambda A^{-1} B x= \Uplambda A^{-1} u + \varepsilon $$

and

$$ V(\Uplambda A^{-1} u + \varepsilon) = \Uplambda A^{-1}\Upsigma A^{-1^{\prime}} \Uplambda^{\prime}+\Uppsi $$

and using the above to calculate \(V(\hat{y}^{\ast})\) according to (17).

Alternatively, Muthen (1998-2004) gives another expression of the latent factor estimator based on maximisation of posterior likelihood. The model is written as

$$ v = \nu_v +\Uplambda_v \eta_v + \varepsilon_v $$
$$ A_v \eta_v = \alpha_v + u_v $$

where

$$ v = \left[\begin{array}{l}y \\ x\end{array}\right]; \quad \nu_v = \left[ \begin{array}{l} v_y\\ 0\end{array}\right] \quad \Uplambda_v= \left[\begin{array}{ll} \Uplambda & 0\\ 0 & I\end{array}\right];\quad \eta_v = \left[\begin{array}{l}\eta\\ \eta_x\end{array}\right] \quad \varepsilon_v = \left[\begin{array}{l} \varepsilon\\ 0\end{array}\right] $$
$$ A_v = \left[\begin{array}{ll} A & -B \\0 & I\end{array}\right]; \quad \alpha_v = \left[\begin{array}{l}\alpha\\0 \end{array}\right]; \quad u_v = \left[\begin{array}{l} u\\0\end{array}\right]; $$

with

$$ E(\varepsilon) = 0 \quad \quad E(u) = 0 $$

and

$$ V(\varepsilon) = \Uppsi \quad \quad V(u) = \Upsigma $$

Thus the model is in fact

$$ \begin{aligned} y &= \nu +\Uplambda \eta + \varepsilon\\ A \eta &= \alpha + B x + u\\ \end{aligned} $$
$$ x = \eta_x $$

The factor score estimator is then:

$$ \hat{\eta_v} = \mu_v + C (v -\nu_v - \Uplambda_v \mu_v) $$
(18)

where

$$ \mu_v = A^{-1} \alpha_v $$
$$ C = A_v^{-1} \Upsigma_v A_v^{-1^{\prime}} \Uplambda_v^{\prime} (\Uplambda_v A_v^{-1} \Upsigma_v A_v^{-1^{\prime}} \Uplambda_v^{\prime}+ \Uppsi_v)^{-1} $$

and

$$ \Upsigma_v = \left[\begin{array}{ll}\Upsigma & 0\\ 0 & \Upsigma_{xx}\end{array}\right]; \quad \Uppsi_v = \left[\begin{array}{ll} \Uppsi & 0\\0 & 0\end{array}\right]. $$

Replacing the above partitioned matrices and vectors in (18) and performing all the calculations, one gets:

$$ \hat{\eta} = A^{-1} \alpha + A^{-1} B x + A^{-} \Upsigma A^{-1^{\prime}} \Uplambda (\Uplambda A^{-1} \Upsigma A^{-1^{\prime}} \Uplambda^{\prime}+ \Uppsi)^{-1} (y- v_y - \Uplambda A^{-1} \alpha - \Uplambda B x) $$

and

$$ \hat{\eta}_x = x $$

The last result is expected as we assume that the x’s are directly observed.

Assuming y is centered and regrouping the intercept term A −1α and the ‘exogenous’ elements term A −1 Bx into one term denoting it with the same symbol A −1 Bx (i.e. assuming x incorporates a constant), one gets

$$\hat{\eta} = A^{-1} B x + A^{-1} \Upsigma A^{-1^{\prime}} \Uplambda (\Uplambda A^{-1} \Upsigma A^{-1^{\prime}} \Uplambda^{\prime}+ \Uppsi)^{-1} (y - \Uplambda A^{-1} B x) $$

Thus we see that it is the same expression as the Empirical Bayes estimator (17) (under our above assumptions) and hence has the same variance.

Appendix E

5.1 Monotonic Transformation and Posterior Distribution

The ordinality of latent factors implies that any monotonic transformation of y * will preserve the order in \(\hat{y^{\ast}}. \) We will show this in the case of a scalar latent factor y * with a vector indicator y. The proof can be extended to the vector case without any major difficulty.

The posterior distribution of the latent factor y * given the indicator y is given by

$$ p(y^{\ast}|y) = \frac{p(y^{\ast}) \pi(y|y^{\ast})}{f(y)} $$

where p(y *|y) denotes the posterior density of y * given y, p(y *) is the prior density of y *, π(y|y *) is the distribution of y given y * and f(y) denotes the density of y.

Let us now transform y *: u *g(y *).

Then, using

$$ y^{\ast}= g^{-1}(u^{\ast}), \quad p(u^{\ast}) = p(y^{\ast}) \left(\frac{d g}{d y^{\ast}}\right)^{-1} $$

and

$$ \pi(y|y^{\ast}) = \pi(y|g^{-1}(u^{\ast})) $$

one can write

$$ p(y^{\ast}|y) = \frac{p(y^{\ast}) \left(\frac{dg}{dy^{\ast}}\right) \pi(y|g^{-1}(u^{\ast}))}{f(y)} $$

or

$$ = \left(\frac{dg}{dy^{\ast}}\right) \frac{p(g^{-1}(u^{\ast})) \left(\frac{dg}{dy^{\ast}}\right) \pi(y|g^{-1}(u^{\ast}))}{f(y)} $$

The first element of the product is positive if g(y *) is monotonic increasing and one can write the second part as p(g −1(u *)|y) ≡ p(u *|y).

Hence

$$ p(u^{\ast}|y) = \left(\frac{dg}{dy^{\ast}}\right)^{-1} p(y^{\ast}|y) $$

Therefore if

$$ E(y^{\ast}|y_1) > E(y^{\ast}|y_2) $$

then we have

$$ \int y^{\ast} p(y^{\ast}|y_1) dy^{\ast} > \int y^{\ast} p(y^{\ast}|y_2) dy^{\ast} $$
$$ \int g(y^{\ast}) p(y^{\ast}|y_1) dy^{\ast} > \int g(y^{\ast}) p(y^{\ast}|y_2) dy^{\ast} $$
$$ \int g(y^{\ast}) \left(\frac{dg}{dy^{\ast}}\right) ^{-1} p(u^{\ast}|y_1) dy^{\ast} > \int g(y^{\ast}) \left(\frac{dg}{dy^{\ast}}\right)^{-1} p(u^{\ast}|y_2) dy^{\ast} $$
$$ \int u^{\ast} \left(\frac{dg}{dy^{\ast}}\right)^{-1} p(u^{\ast}|y_1) \left(\frac{dg}{dy^{\ast}}\right) du^{\ast} > \int u^{\ast} \left(\frac{dg}{dy^{\ast}}\right)^{-1} p(u^{\ast}|y_2) \left(\frac{dg}{dy^{\ast}}\right) du^{\ast} $$
$$ \int u^{\ast} p(u^{\ast}|y_1) du^{\ast} > \int u^{\ast} p(u^{\ast}|y_2) du^{\ast} $$

and finally

$$ E(u^{\ast}|y_1) > E(u^{\ast}|y_2). $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnakumar, J., Nagar, A.L. On Exact Statistical Properties of Multidimensional Indices Based on Principal Components, Factor Analysis, MIMIC and Structural Equation Models. Soc Indic Res 86, 481–496 (2008). https://doi.org/10.1007/s11205-007-9181-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11205-007-9181-8

Keywords

JEL Classification codes

Navigation