Skip to main content
Log in

Review of Correlation Dependencies Between Seismoacoustic and Geotechnical Characteristics of Frozen Soils

  • CONSTRUCTION ON PERMAFROST
  • Published:
Soil Mechanics and Foundation Engineering Aims and scope

Data on the correlation of seismoacoustic and physical-mechanical characteristics of frozen soils have been summarized, which can be used as a basis for improving the methods of engineering and geological surveys, as well as laboratory tests of soils and design in permafrost zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Rose, Ultrasonic Waves in Solid Media, Cambridge University Press, Cambridge, UK, (1999).

    Google Scholar 

  2. L. T. Roman, Mechanics of Frozen Soils [in Russian], Nauka/Interperiodika, Moscow (2002).

  3. L. T. Roman, M. N. Tsarapov, Kotov et al., Manual for Determining the Physical and Mechanical Properties of Freezing, Frozen, and Thawing Dispersed Soils [in Russian], Knizhny dom Universitet, Moscow (2018).

  4. H. W. Stevens, “The response of frozen soils to vibratory loads,” USA CRREL Technical Rep, 265 (1975).

  5. Yu. D. Zykov and O. P. Chervinskaya, Acoustic Properties of Ice Soils and Ice [in Russian], Nauka, Moscow (1989).

  6. J. M. Lorenzo, J. Hicks, and E. E. Vera, "Integrated seismic and cone penetration test observations at a distressed earthen levee,” Eng. Geol., Marrero, Louisiana, USA, 168, 59-68 (2014).

  7. S. Dou, J. Ajo-Franklin, “Full-wavefield inversion of surface waves for mapping embedded low-velocity zones in permafrost,” Geophysics, 79, No. 6, 107-124 (2014), https://doi.org/10.1190/geo2013-0427.1.

    Article  Google Scholar 

  8. S. R. James, H. A. Knox, R. E. Abbott, M. P. Panning, and E. J. Screaton, “Insights into permafrost and seasonal activelayer dynamics from ambient seismic noise monitoring,” J. Geophys. Res. Earth Surf., 124, 1798-1816 (2019).

    Article  Google Scholar 

  9. P. P. Overduin, C. Haberland, Ryberg, et al. “Submarine permafrost depth from ambient seismic noise,” Geophys. Res. Lett., 42, 7581-7588 (2015), https://doi.org/10.1002/2015GL065409.

  10. C. D. Ruppel, B. M. Herman, L. L. Brothers, and P. E. Hart, “Subsea ice-bearing permafrost on the U.S. beaufort margin: borehole constraints,” Geochem. Geophys. Geosyst., 17, 4333-4353 (2016), https://doi.org/10.1002/2016GC006582.

    Article  Google Scholar 

  11. F. M. Wagner, C. Mollaret, T. Gunther, A. Kemna, and C. Hauck, “Quantitative imaging of water, ice and air in permafrost systems through petrophysical joint inversion of seismic refraction and electrical resistivity data,” Geophys. J. Int., 219(3), 1866-1875 (2019).

    Article  Google Scholar 

  12. A. V. Koshurnikov, P. I. Kotov, and I. A. Agapkin, “The influence of salinity on the acoustic and electrical properties of frozen soils,” Moscow Univ. Geol. Bull., No. 75, 97-104 (2020).

  13. P. I. Kotov, I. A. Agapkin, “Correlation between the geophysical parameters and strength characteristics of frozen soils of various salinity levels,” Soil Mech. Found. Eng., 58, 41-47 (2021).

    Article  Google Scholar 

  14. P. K. Robertson, R. G. Campanella, D. Gillespie, and A. Rice, “Seismic CPT to measure in situ shear wave velocity,” J. Geotech. Eng., 791-803, 112, IP - 8, AID - https://doi.org/10.1061/(ASCE)0733-9410(1986)112:8(791).

  15. A. P. Butcher, R. G. Campanella, A. M. Kaynia, and K. R. Massarsch, “Seismic cone downhole procedure to measure shear wave velocity, a guideline prepared by ISSMGE TC10: Geophysical Testing in Geotechnical Engineering,” Proc. XVI Inter. Conf. on Soil Mechanics and Geotechnical Engineering, May, Osaka, Japan (2006).

  16. A. M. LeBlanc, R. Fortier, M. Allard, C. Cosma, and S. Buteau, “Seismic cone penetration test and seismic tomography in permafrost,” Can. Geotech. J., 41(5), 796-813 (2004).

    Article  Google Scholar 

  17. H. Liu, P. Maghoul, and A. Shalaby, “Seismic physics-based characterization of permafrost sites using surface waves,” The Cryosphere, 16(4), 1157-1180 (2022).

    Article  Google Scholar 

  18. J. M. Carcione and G. Seriani, “Seismic and ultrasonic velocities in permafrost,” Geophys. Prospect., 46, 441-454 (1998).

    Article  Google Scholar 

  19. J. M. Carcione and G. Seriani, “Wave simulation in frozen porous media,” Comput. Phys., 170(2), 676-695 (2001)

    Article  MATH  Google Scholar 

  20. J. M. Carcione, J. E. Santos, C. L. Ravazzoli, and H. B. Helle, “Wave simulation in partially frozen porous media with fractal freezing conditions,” J. Appl. Phys., 94(12), 7839-7847 (2003).

    Article  Google Scholar 

  21. H. Liu, P. Maghoul, and A. Shalaby, “Laboratory-scale characterization of saturated soil samples through ultrasonic techniques,” Sci. Rep., 10(1), 1-17 (2020).

    Google Scholar 

  22. H. Liu, P. Maghoul, and A. Shalaby, “Seismic physics-based characterization of permafrost sites using surface waves,” The Cryosphere, 16(4), 1157-1180 (2022).

    Article  Google Scholar 

  23. C. Lyu, G. Grimstad, and S. Nishimura, “Pore pressure coefficient in frozen soils,” Geotechnique, 1-10 (2021).

  24. C. Lyu, Amiri S. G. Ghoreishian, V. Knut, and T. Ingeman-Nielsen, “Comparison of geo-acoustic models for unfrozen water content estimation,” J. Geophys. Res. Solid Earth, (2020), https://doi.org/10.1029/2020JB019766.

  25. H. Jia, F. Zi, G. Yang, et al., “Influence of pore water (ice) content on the strength and deformability of frozen argillaceous siltstone,” Rock Mech. Rock Eng., 53, 967-974 (2020), https://doi.org/10.1007/s00603-019-01943-0.

    Article  Google Scholar 

  26. C. Kneisel, C. Hauck, R. Fortier, and B. Moorman, “Advances in geophysical methods for permafrost investigations,” Permafr. Periglac. Process, 19, 157-178 (2008).

    Article  Google Scholar 

  27. X. Huang, D. Li, F. Ming, et al., “An experimental study on the relationship between acoustic parameters and mechanical properties of frozen silty clay,” Sci. Cold Arid Reg., 5(5), 596-602 (2013), https://doi.org/10.3724/SP.J.1226.2013.00596.

    Article  Google Scholar 

  28. “Recommendations for determining the physical and mechanical properties of frozen dispersed soils by geophysical methods,” PNIIIS Gosstroya SSSR, Stroyizdat, Moscow (1989).

  29. O. K. Voronkov, G. V. Mikhailovsky, “Study of the structure of frozen loose deposits in natural occurrence by engineering seismic survey,” Izv. VNIIG im. B.Ye.Vedeneyeva, 104, 117-136 (1974).

  30. C. Hauck, M. Bottcher, and H. Maurer, “A new model for estimating subsurface ice content based on combined electrical and seismic data sets,” The Cryosphere, 5, No. 2, 453-468 (2011), https://doi.org/10.5194/tc-5-453-2011.

    Article  Google Scholar 

  31. Y. Nakano, R. J. Martin, and M. Smith, “Ultrasonic velocities of the dilatational and shear waves in frozen soils,” Water Res. Res., 8(4), 1024-1030 (1972).

    Article  Google Scholar 

  32. Y. Nakano and R. Arnold, “Acoustic properties of frozen Ottawa sand,” Water Res. Res., 9(1), 178-184 (1973).

    Article  Google Scholar 

  33. T. S. Vinson, Frozen soils under dynamic loads,” in Geotechnical Issues of the North Development, Nedra, Moscow, 401-448 (1983).

  34. C. Hauck et al., “A new model for quantifying subsurface ice content based on geophysical data sets,” The Cryosphere Disc., 4, 787-821 (2010).

    Google Scholar 

  35. J. W. Zhang, J. Murton, S. J. Liu, L. L. Sui, S. Zhang, L. Wang, and H. Ding, “Sensitivity and regression analysis of acoustic parameters for determining physical properties of frozen fine sand with ultrasonic test,” Q. J. Eng. Geol. Hydrogeol., 54(1) (2021).

  36. R. W. Zimmerman and M. S. King, “The effect of the extent of freezing on seismic velocities in unconsolidated permafrost,” Geophysics, 51, No. 6, 1285-1290 (1986), https://doi.org/10.1190/1.1442181.

    Article  Google Scholar 

  37. K. D. Jarvis, R. J. Knight, “Aquifer heterogeneity from SH-wave seismic impedance inversion,” Geophysics, 67(5), 1548-1557 (2002).

    Article  Google Scholar 

  38. D. Li, X. Huang, F. Ming, and Y. Zhang, “The Impact of unfrozen water content on ultrasonic wave velocity in frozen soils,” Procedia Eng., 143, 1210-1217, ISSN 1877-7058 (2016), https://doi.org/10.1016/j.proeng.2016.06.114.

  39. I. A. Agapkin, P. I. Kotov, and R. G. Kal’bergenov, “Determination of unfrozen water content in frozen soils by the acoustic method European,” Association of Geoscientists & Engineers. Conference Proceedings, Tyumen 2021, March, 2021, 1-6 (2021), https://doi.org/10.3997/2214-4609.202150024.

  40. A. D. Frolov, Electrical and Elastic Properties of Frozen Rocks and Ice [in Russian], Pushchino (2005).

  41. M. H. Deschartres, Fr. Cohn-Tenoudji, J. Aguirre-Puente, and B. Khastou, “Acoustic and unfrozen water content determination,” Proc.5th Inl. Conf. on Permafrost, 324-328 (1988).

  42. I. A. Agapkin and P. I. Kotov, “Determination state of frozen saline soils by geophysical methods,” European Association of Geoscientists & Engineers. Conference Proceedings, Tyumen 2021, March, 2021, 1-6 (2021), https://doi.org/10.3997/2214-4609.202150012.

  43. Ya. Ji, K. Zhu, C. Lyu, S. Wang, N. Dianyan, J. Fan, and L. Shi, “Semiempirical correlation between P-wave velocity and thermal conductivity of frozen silty clay soil,” Shock Vibr., 1-7 (2021), https://doi.org/10.1155/2021/5533696.

  44. J. S. Lee, H. K. Yoon, “Theoretical relationship between elastic wave velocity and electrical resistivity,” J.Appl. Geophys., 116, 51-61 (2015).

    Article  Google Scholar 

  45. B. V. Goncharov and B. G. Khazin, “The use of ultrasound to assess the strength of frozen soils during their development,” Osn. Fundam. Mekh. Gruntov, No. 2, 16-19 (1973).

  46. D. Li, X. Huang, F. Ming, et al. “Experimental research on acoustic wave velocity of frozen soils during the uniaxial loading process,” Sci. Cold Arid Reg., 7(4): 0323-0328 (2015). https://doi.org/10.3724/SP.J.1226.2015.00323.

    Article  Google Scholar 

  47. X. Liu, H. Qin, and H. Lan, “On the relationship between soil strength and wave velocities of sandy loess subjected to freeze-thaw cycling,” Soil Dyn. Earthq Eng., 136, 106216, ISSN 0267-7261 (2020), https://doi.org/10.1016/j.soildyn.2020.106216.

  48. D. Li, F. Ming, X. Huang, and Y. Zhang, “Application of ultrasonic technology for measuring physical and mechanical properties of frozen silty clay,” Cold Regions Eng., 1-12 (2015), https://doi.org/10.1061/9780784479315.001.

  49. O. P. Chervinskaya, A. D. Frolov, and Y. D. Zykov, “On the correlation of elastic and strength properties for saline frozen soils,” Proceedings of the 7th International Conference on Permafrost: National Academy of Sciences, 139-141 (1998).

  50. O. K. Voronkov, Engineering Seismic in Permafrost Zone (Study of the Structure and Properties of Frozen and Thawed Rocks and Massifs), OAO “VNIIG im. B.E. Vedeneeva”, St. Petersburg (2009).

  51. N. N. Goryainov, V. N. Nikitin, and A. I. Savich, Application of Seismoacoustic Methods in Hydrogeology and Engineering Geology [in Russian], Nedra, Moscow (1992).

  52. D. Wang, Yu. Zhu, Wei Ma, et al., “Application of ultrasonic technology for physical-mechanical properties of frozen soils,” Cold Reg. Sci. Technol., 44, 12-19 (2006).

  53. P. Hacikoylu, J. Dvorkin, and G. Mavko, Resistivity-Velocity Transforms Revisited. The Leading Edge, 1006-1009 (2006).

  54. Yu. D. Zykov, Geophysical Methods for the Cryolithozone Investigation [in Russian], Moscow (2007).

  55. Yu. D. Zykov, A. G. Skvortsov, A. V. Koshurnikov, and A. A. Pogorelov, “Informational value of geophysical research during engineering surveys in permafrost zone,” Inzh. Izysk., No. 12, 57-63 (2009).

  56. M. S. Sudakova and M. L. Vladov, “Experimental study of the acoustic properties of water-saturated sand in the temperature range from -20 ºC to +20ºC,” Vestn. Mos. Univ. Ser. 4. Geol., Izdatelstvo Mosk. Univ., Moscow, No. 4, 55-62 (2019).

  57. M. S. Sudakova and M. L. Vladov, “Results of an experimental study of the acoustic properties of water-saturated sand in the temperature range from -20 ºC to +20ºC,” Vestn. Mos. Univ. Ser. 4. Geol., Izdatelstvo Mosk. Univ., Moscow, No. 2, 89-98 (2020).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. I. Kotov.

Additional information

Translated from Osnovaniya, Fundamenty i Mekhanika Gruntov, No. 2, March-April, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotov, P.I., Agapkin, I.A., Vladov, M.L. et al. Review of Correlation Dependencies Between Seismoacoustic and Geotechnical Characteristics of Frozen Soils. Soil Mech Found Eng 60, 181–187 (2023). https://doi.org/10.1007/s11204-023-09880-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11204-023-09880-5

Navigation