Skip to main content
Log in

Three-Dimensional Vibration Isolation Effect of Pile Group on Rayleigh Waves in a Fluid-Saturated Half-Space

  • EARTHQUAKE-RESISTANT CONSTRUCTION
  • Published:
Soil Mechanics and Foundation Engineering Aims and scope

Based on Biot’s theory of two-phase media, the screening effectiveness of a multi-row pile barrier system on incident Rayleigh waves in a fluid-saturated poroelastic half-space is investigated using a high-precision threedimensional indirect boundary element method for multi-domain scattering. According to the single-layer potential theory, the scattered wavefield in a poroelastic half-space can be constructed using the distributed loads in three orthogonal directions and the fluid source, which are virtually applied on the surface of all the scatterers. This paper describes the theoretical derivation of the model. A companion paper presents the numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. E. Richart, J. R. Hall, and R. D. Woods, “Vibrations of soils and foundations,” Principles of Neurodynamics Spartan, 209(5019), 137 (1970).

    Google Scholar 

  2. D. D. Barkan, Dynamics of Bases and Foundations (1962).

  3. I. H. Ho, S. Li, and L. Ma, “Analysis of partially saturated clayey slopes using finite element method,” Soil. Mech. Found. Eng., 56(6), 382-389 (2020).

    Article  Google Scholar 

  4. J. Huang and Z. Shi, “Application of periodic theory to rows of piles for horizontal vibration attenuation,” Int. J. Geomech., 13(2), 132-142 (2013).

    Article  Google Scholar 

  5. G. L. Sivakumar Babu, Amit Srivastava, and K. S. Nanjunda Rao, “Analysis and design of vibration isolation system using open trenches,” Int. J. Geomech., 11(5), 364-369 (2011).

  6. G. Y. Gao, Z. Y. Li, and C. Qiu, “Three-dimensional analysis of in-filled trench as barriers for isolating vibration in far field,” Rock Soil Mech., 26(8), 1184-1188 (2005).

    Google Scholar 

  7. G. Y. G, J. Li, N. Li, J. Song, and Z. G. Peng, “Three-dimensional analysis of far-field passive vibration isolation for row of piles in layered foundation,” Chin. J. Rock Mech. Eng., 32(S1), 2934-2943 (2013).

  8. J. F. Lu, X. Zhang, and R. Zhang, “A wavenumber domain boundary element model for the vibration isolation via a new type of pile structure: linked pile rows,” Arch. Appl. Mech., 84(3), 401-420 (2014).

    Article  MATH  Google Scholar 

  9. J. F. Lu, X. Zhang, and C. X. Li, “Vibration isolation system for linked pile rows and its numerical simulation,” Chin. J. Geotech. Eng., 36(7), 1316-1325 (2014).

    Google Scholar 

  10. S. E. Kattis, D. Polyzos, and D. E. Beskos, “Modelling of pile wave barriers by effective trenches and their screening effectiveness,” Soil. Dyn. Earthq. Eng., 18(1), 1-10 (1999).

    Article  Google Scholar 

  11. S. E. Kattis, D. Polyzos, and D. E. Beskos, “Vibration isolation by a row of piles using a 3‐D frequency domain BEM,” Int. J. Numer. Mech. Eng., 46(5), 713-728 (1999).

    Article  MATH  Google Scholar 

  12. F. L. Sun, Y. P. Gong, and C. Y. Dong, “A novel fast direct solver for 3D elastic inclusion problems with the isogeometric boundary element method,” J. Comput. Appl. Mach., 377, 112904 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Xu, “Analysis of isolation effects about elastic waves by discontinuous barriers composed of rigid piles,” Electron. J. Geotech. Eng., 18, 1-11 (2013).

    Google Scholar 

  14. H. Takemiya and J. Shimabuku, “Application of soil-cement columns for better design of bridge piles and mitigation of nearby ground vibration due to traffic,” Proc. Struct. Eng., 14(476), 1341-1351 (2002).

    Google Scholar 

  15. Y. A. Zhi and C. Zheng, “Vibration isolation of row of piles embedded in transverse isotropic multi-layered soils,” Comput. Geotech., 99, 115-129(2018).

    Article  Google Scholar 

  16. R. D. Woods, “Screening of surface waves in soils,” J. Soil Mech. Found. Div., 94, 951-980 (1968).

    Article  Google Scholar 

  17. E. Çelebi, S. Fırat, G. Beyhan, İ. Çankaya, İ. Vural, and O. Kırtel, “Field experiments on wave propagation and vibration isolation by using wave barriers,” Soil. Dyn. Earthq. Eng., 29(5), 824-833 (2009).

    Article  Google Scholar 

  18. H. Antes and O. V. Estorff, “Dynamic response of 2D and 3D block foundations on a halfspace with inclusions,” Soil Dyn. Earthq. Eng., 13(5), 305-311 (1994).

    Article  Google Scholar 

  19. Alzawi, Ashref, and M. H. E. Naggar, “Full scale experimental study on vibration scattering using open and in-filled (GeoFoam) wave barriers,” Soil Dyn. Earthq. Eng., 31(3), 306-317 (2011).

  20. Y. Y. Chen, and L. Wang, “Isolation of surface wave-induced vibration using periodically modulated piles,” Int. J. Appl. Mech., 6(04), 1450042 (2014).

    Article  Google Scholar 

  21. P. Coulier, V. Cuéllar, G. Degrande, and G. Lombaert, “Experimental and numerical evaluation of the effectiveness of a stiff wave barrier in the soil,” Soil Dyn. Earthq. Eng., 77, 238-253 (2015).

    Article  Google Scholar 

  22. G . Y. Gao, N. Li, and X. Gu, “Field experiment and numerical study on active vibration isolation by horizontal blocks in layered ground under vertical loading,” Soil Dyn. Earthq. Eng., 69(69), 251-261 (2015).

    Article  Google Scholar 

  23. G. Gao, J. Chen, J. Yang, and Y. Meng, “Field measurement and FE prediction of vibration reduction due to pile-raft foundation for high-tech workshop,” Soil Dyn. Earthq. Eng., 101, 264-268 (2017).

    Article  Google Scholar 

  24. M. A. Biot, “Theory of propagation of elastic waves in a fluid saturated porous solid. Low frequency range,” J. Acoustical Society of America, 28(2), 179-191 (2005).

    Article  MathSciNet  Google Scholar 

  25. M. A. Biot, “Mechanics of deformation and acoustic propagation in porous media,” J. Appl. Phys., 33(4), 1482-98 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  26. O. Maeso, J. J. Aznárez, and F. Garcı́a, “Dynamic impedances of piles and groups of piles in saturated soils,” Comput. Struct., 83(10-11), 769-782 (2005).

  27. G. Gao, J. Chen, X. Gu, J. Song, S. Li, and N. Li, “Numerical study on the active vibration isolation by wave impeding block in saturated soils under vertical loading,” Soil Dyn. Earthq. Eng., 93, 99-112 (2017).

    Article  Google Scholar 

  28. B. Xu, J. F. Lu, and J. H. Wang, “A semi-analytical model for the simulation of the isolation of the vibration due to a harmonic load using pile rows embedded in a saturated half-space,” Open Civil Eng J., 4(1), 38-56 (2010).

    Article  Google Scholar 

  29. B. Xu, J. F. Lu, and J. H. Wang, “Numerical analysis of the isolation of the vibration due to Rayleigh waves by using pile rows in the poroelastic medium,” Appl. Mech., 80(2), 123 (2010).

    MATH  Google Scholar 

  30. J. F. Lu, B. Xu, and J. H. Wang, “A numerical model for the isolation of moving-load induced vibrations by pile rows embedded in layered porous media,” Int. J. Solids. Struct., 46(21), 3771-3781 (2009).

    Article  MATH  Google Scholar 

  31. J. F. Lu, B. Xu, and J. H. Wang, “Numerical analysis of isolation of the vibration due to moving loads using pile rows,” J. Sound. Vib., 319(3-5),940-962 (2009).

    Article  Google Scholar 

  32. C. H. Chiang, and P. H. Tsai, “Numerical study of the screening effectiveness of open. trenches for high-speed traininduced vibration,” Shock. Vib., 2014(2), 1-11 (2014).

    Google Scholar 

  33. Z. Ba, J. Wang, and J. Liang, “Reduction of train-induced vibrations by using a trench in a layered half-space,” J. Vib. Eng. Technol., 18(3), 1742-1764 (2016).

    Google Scholar 

  34. X. Zhang and J. F. Lu, “A wavenumber domain boundary element method model for the simulation of vibration isolation by periodic pile rows,” Eng. Anal. Bound Elem., 37(7-8), 1059-1073 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  35. Z. Liu, J. Liang, and C. Wu, “The diffraction of Rayleigh waves by a fluid-saturated alluvial valley in a poroelastic half-space modeled by MFS,” Comput. Geosci-UK., 91, 33-48 (2016).

    Article  Google Scholar 

  36. Z. Liu, L. Lei, J. Liang, and Y. Zhou, “An indirect boundary element method to model the 3-D scattering of elastic waves in a fluid-saturated poroelastic half-space,” Eng. Anal. Bound. Elem., 66, 91-108 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  37. C. Qiu, “Three dimensional analysis of far-field passive isolation for continuous and noncontinuous barriers,” Tongji University, 58 (2003).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Liu.

Additional information

Translated from Osnovaniya, Fundamenty i Mekhanika Gruntov, No. 2, March-April, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Feng, T., Fu, Z. et al. Three-Dimensional Vibration Isolation Effect of Pile Group on Rayleigh Waves in a Fluid-Saturated Half-Space. Soil Mech Found Eng 60, 158–164 (2023). https://doi.org/10.1007/s11204-023-09877-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11204-023-09877-0

Navigation