Skip to main content
Log in

Experimental Determination of Soil Damping Coefficients

  • EARTHQUAKE-RESISTANT CONSTRUCTION
  • Published:
Soil Mechanics and Foundation Engineering Aims and scope

Calculation analysis of interaction between the building foundation and the soil is gaining increasing attention, particularly in the seismic regions. The results of the analysis of building dynamics depend largely on the dissipative (damping) properties of the soil, which are determined via experimental methods. The article proposes a method for determining the damping characteristics of bulk materials using an experimental stand. The stand can also be used to find effective ways for damping construction objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Z. Ter-Martirosyan, A. V. Manukyan, E. S. Sobolev, and G. O. Anzhelo, “Influence of soils damping on the interaction of the base and structure under seismic action,” Zhilishchonoe Stroitel’stvo, 1-2, 39-44 (2019), https://doi.org/10.31659/0044-4472-2019-1-2-39-44.

    Article  Google Scholar 

  2. S. S. Gómez, C. P. W. Geurts, and A. Metrikine, “On the importance of soil damping for tall buildings loaded by wind,” Eng. Struct., 163, 426–435 (2018), https://doi.org/10.1016/j.engstruct.2017.11.029.

    Article  Google Scholar 

  3. E. Ahmadi, F. Khoshnoudian, and M. Hosseini, “Importance of soil material damping in seismic responses of soil-MDOF structure systems,” Soils Found, 55, 35-44 (2015), https://doi.org/10.1016/j.sandf.2014.12.003.

    Article  Google Scholar 

  4. Z. Zhang, H. Wei, and X. Qin, “Experimental study on damping characteristics of soil-structure interaction system based on shaking table test,” Soil Dyn. Earthq. Eng., 98, 183–190 (2017), https://doi.org/10.1016/j.soildyn.2017.04.002.

    Article  Google Scholar 

  5. J. Jiang, J. Lian, X. Dong, H. Wang, and H. Zhou, “Soil damping calculation of the offshore wind turbine supported by wide-shallow bucket foundation,” Appl. Ocean Res., 111, 102–682 (2021), https://doi.org/10.1016/j.apor.2021.102682.

    Article  Google Scholar 

  6. R. K. Ingle and H. S. Chore, “Soil-structure interaction analysis of building frames-an overview,” Struct. Eng. (Madras), 34 (5), 360-368 (2007).

    Google Scholar 

  7. Y. Lu, I. Hajirasouliha and A.M. Marshall, “Performance-based seismic design of flexible-base multi-storey buildings considering soil-structure interaction,” Eng. Struct, 108, 90-103 (2016), https://doi.org/10.1016/j.engstruct.2015.11.031.

    Article  Google Scholar 

  8. H. B. Mason, N. W. Trombetta, Z. Chen, J. D. Bray, T. C. Hutchinson, and B. L. Kutter “Seismic soil–foundation–structure interaction observed in geotechnical centrifuge experiments,” Soil Dyn. Earthq. Eng., 48, 162-174 (2013), https://doi.org/10.1016/j.soildyn.2013.01.014.

    Article  Google Scholar 

  9. E. Nazarimofrad and S. M. Zahrai, “Fuzzy control of asymmetric plan buildings with active tuned mass damper considering soil-structure interaction,” Soil Dyn. Earthq. Eng., 115, 838-852 (2017), https://doi.org/10.1016/j.soildyn.2017.09.020.

    Article  Google Scholar 

  10. L. G. Arboleda-Monsalve, J. A. Mercado, V. Terzic, and K. R. Mackie, “Soil-structure interaction effects on seismic performance and earthquake-induced losses in tall buildings,” Geotech. Geoenviron. Eng., 146 (5), 04020028 (2020), https://doi.org/10.1061/(ASCE)GT.1943-5606.0002248.

    Article  Google Scholar 

  11. M. Sarcheshmehpour, H. E. Estekanchi, and M. A. Ghannad, “Optimum placement of supplementary viscous dampers for seismic rehabilitation of steel frames considering soil–structure interaction,” Struct. Des. Tall Spec. Build., 29 (1) (2020), https://doi.org/10.1002/tal.1682.

  12. E. Aydin, B. Ozturk, A. Bogdanovic, and E. N. Farsangi, “Influence of soil-structure interaction (SSI) on optimal design of passive damping devices,” Struct., 28, 847-862 (2020), https://doi.org/10.1016/j.istruc.2020.09.028.

    Article  Google Scholar 

  13. E. Aydin, B. Ozturk, and M. Dutkiewicz, “Analysis of efficiency of passive dampers in multistorey buildings,” J. Sound. Vib., 439, 17-28 (2019), https://doi.org/10.1016/j.jsv.2018.09.03.

    Article  Google Scholar 

  14. Q. Wu, X. Ding, Ya. Zhang, Z. Chen, and Y. Zhang, “Numerical simulations on seismic response of soil-pilesuperstructure in coral sand,” Ocean Eng., 239, 109808 (2021), https://doi.org/10.1016/j.oceaneng.

    Article  Google Scholar 

  15. B. Ferdosi, M. James, and M. Aubertin, “Effect of waste rock inclusions on the seismic stability of an upstream raised tailings impoundment: a numerical investigation,” Can. Geotech. J., 52(12), 1930-1944 (2015).

    Article  Google Scholar 

  16. H. Murao, K. Nakai, T. Noda, and T. Yoshikawa, “Deformation–failure mechanism of saturated fill slopes due to resonance phenomena based on 1g shaking-table tests,” Can. Geotech. J., 55(11), 1668-1681 (2018), https://doi.org/10.1139/cgj-2017-0385.

    Article  Google Scholar 

  17. K. Nakai, T. Noda, and K. Kato, “Seismic assessment of sheet pile reinforcement effect on river embankments constructed on a soft foundation ground including soft estuarine clay,” Can. Geotech. J., 54(10), 1375–1396 (2017), https://doi.org/10.1139/cgj-2016-0019.

    Article  Google Scholar 

  18. M. Yazdandoust, “Seismic performance of soil-nailed walls using a 1g shaking table,” Can. Geotech. J., 55(1), 1-18 (2018).

    Article  Google Scholar 

  19. A. Bogdanovic, Z. Rakicevic, and E. N. Farsangi, “Shake table tests and numerical investigation of a resilient damping device for seismic response control of building structures,” Struct. Control Health Monit., 26(11) (2019), https://doi.org/10.1002/stc.2443.

  20. K. Chatterjee, D. Choudhury, and H.G. Poulos, “Seismic analysis of laterally loaded pile under influence of vertical loading using finite element method,” Comput. Geotech. J., 67, 172–186 (2015), https://doi.org/10.1016/j.compgeo.2015.03.004.

    Article  Google Scholar 

  21. J.-S. Chiou, W.-Y. Hung, Y.-T. Lee, and Z.-H. Young, “Combined dynamic structure-pile-soil interaction analysis considering inertial and kinematic effects,Comput. Geotech. J., 125, 103671 (2020), https://doi.org/10.1016/j.compgeo.2020.103671.

    Article  Google Scholar 

  22. Y. Le, N. Wang, W. Hu, D. Geng, and Y. Jiang, “Torsional dynamic impedance of a stepped pile based on the wedged soil model,” Comput. Geotech. J., 128, 103854 (2020), https://doi.org/10.1016/j.compgeo.2020.103854.

    Article  Google Scholar 

  23. B. Ferdosi, M. James, and M. Aubertin, “Numerical simulations of seismic and post- seismic behavior of tailings,” Can. Geotech. J., 53 (1), 85–92 (2015), https://doi.org/10.1139/cgj-2014-0345.

    Article  Google Scholar 

  24. A. Hasheminezhad and H. Bahadori, “Seismic response of shallow foundations over liquefiable soils improved by deep soil mixing columns,” Comput. Geotech. J., 110, 251-273 (2019), https://doi.org/10.1016/j.compgeo.2019.02.019.

    Article  Google Scholar 

  25. B. He, J.-M. Zhang, W. Li, and R. Wang, “Numerical analysis of LEAP centrifuge tests on sloping liquefiable ground: influence of dilatancy and post-liquefaction shear deformation”, Soil Dyn. Earthq. Eng., 137, 106288 (2020), https://doi.org/10.1016/j.soildyn.2020.106288.

    Article  Google Scholar 

  26. H. Lim and S. Jeong, “Effect of bedrock acceleration on dynamic and pseudo-static analyses of soil-pile systems,” Comput. Geotech., 126, 103657 (2020), https://doi.org/10.1016/j.compgeo.103657.

    Article  Google Scholar 

  27. Y. X. Zou, J. M. Zhang, and R. Wang, “Seismic analysis of stone column improved liquefiable ground using a plasticity model for coarse-grained soil,” Comput. Geotech., 125, 103690 (2020), https://doi.org/10.1016/j.compgeo.

    Article  Google Scholar 

  28. X. Hu, R. Zhang, X. Ren, C. Pan, X. Zhang, and H. Li, “Simplified design method for structure with viscous damper based on the specified damping distribution pattern,” J. Earthq. Eng., 21(1), 1367-1387 (2020), https://doi.org/10.1080/13632469.2020.1719239.

    Article  Google Scholar 

  29. E. R. Kuzhakhmetova, V. I. Sutyrin, and I. A. Shinkarenko, Patent RU 2699311. Method for determining the damping characteristics of liquids and loose materials.

  30. V. I. Sutyrin, E. R. Kuzhakhmetova, and I. А. Shinkarenko, Patent RU 184676. Device for determining damping coefficient of loose materials and liquids.

  31. V. I. Sutyrin and E. R. Kuzhakhmetova, Patent RU 2646540. Experimental unit (stand) for studying multi-factor dependence of pile damping coefficient when interacting with ground.

  32. V. I. Sutyrin, I. А. Shinkarenko, and E. R. Kuzhakhmetova, “A test stand for determining the damping properties of construction elements and materials,” Izvestiya KGTU, 52, 177-183 (2019).

    Google Scholar 

  33. V. I. Sutyrin and I. А. Shinkarenko, “Application of damping materials in the vibration control system of the ship mechanism,” Izvestiya KGTU, 56, 172-180 (2020).

    Google Scholar 

  34. S. P. Strelkov, Introduction to the Theory of Oscillations [in Russian], “Lan”, St. Petersburg (2005).

  35. D. J. Ewins, Modal Testing: Theory, Practice and Application, 2nd ed., Research Studies Press., England (2009).

  36. D. L. Brown, R. J. Allemang, R. Zimmerman, and M. Mergeay, “Parameter Estimation Techniques for Modal Analysis,” SAE – International, 88(1), 790003-790266, 828-846 (1979).

  37. V. I. Sutyrin and I. А. Shinkarenko, “Influence of foundation dynamic properties on vibration isolation of centrifugal pumps,” Transport i Servis, 6, 117-126 (2018).

    Google Scholar 

  38. E. R. Kuzhakhmetova and A. I. Sapozhnikov, “Architectural expressiveness and physiological expediency of buildings with curvilinear surfaces,” Stroitel’nyye Materialy, Oborudovaniye, Tekhnologii XXI Veka, 11(166), 42-45 (2012).

    Google Scholar 

  39. A. I. Sapozhnikov, Life of Buildings in the Earth Element, Germany: LAP Lamber Academic Publishing (2014).

  40. E. R. Kuzhakhmetova, Patent RU 2740506. Long-span building with dome-slab-cable coating, 2 (2021).

  41. E. R. Kuzhakhmetova and A. I. Sapozhnikov, “Comparative analysis of long and short piles with horizontal uploading,” Stroitel’nyye Materialy, Oborudovaniye, Tekhnologii XXI Veka, 5-6(196–197), 30–34 (2015).

  42. A. I. Sapozhnikov and E. R. Kuzhakhmetova, Immersion Methods, Strength and Deformation Calculations of Piles [in Russian] (2015).

  43. E. R Kuzhakhmetova, “Research of stress deformed state of the rammed monolithic reinforced concrete cone-shaped piles with side and bottom forms from crushed stones,” Stroit. Mekh. Inzhenern. Konstr. Sooruzh., 17(4), 335-356 (2021).

    Google Scholar 

  44. E. R. Kuzhakhmetova, “Influence of constructive solutions on the stiffness characteristics of the rammed monolithic reinforced concrete cone-shaped piles with side and bottom forms from crushed stones,” Stroit. Mekh. Inzhenern. Konstr. Sooruzh, 17(5), 500-518 (2021)

    Google Scholar 

  45. E. R. Kuzhakhmetova and A. I. Sapozhnikov, Patent RU 157318, 33 (2015).

  46. A. I. Sapozhnikov and E. R. Kuzhakhmetova, Patent RU 154795, 25 (2015).

  47. E. R, Kuzhakhmetova, “Dipping, calculation and construction of the monolithic reinforced concrete pile of the conical form,” Nauchnoye obozreniye. Tekhnicheskiye Nauki, 2, 57-64 (2017).

  48. R. J. Guyan, Reduction of Stiffness and Mass Matrices, JAIAA, 3, 380 (1965).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. R. Kuzhakhmetova.

Additional information

Translated from Osnovaniya, Fundamenty i Mekhanika Gruntov, No. 4, July-August, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sutyrin, V.I., Kuzhakhmetova, E.R. & Shinkarenko, I.A. Experimental Determination of Soil Damping Coefficients. Soil Mech Found Eng 59, 362–370 (2022). https://doi.org/10.1007/s11204-022-09823-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11204-022-09823-6

Navigation