Skip to main content
Log in

Instrumental Quality Control of Soil-Cement Columns and Solids by Seismoacoustic Methods

  • ENGINEERING AND GEOLOGICAL SURVEYS
  • Published:
Soil Mechanics and Foundation Engineering Aims and scope

The issues of instrumental control applying geophysical methods in the practice of using jet grouting of soils for the construction of underground geotechnical structures are discussed. The capabilities of the geophysical complex used to examine the state of objects constructed using jet grouting technology in Russia and other countries are described. The use of borehole seismic methods for instrumental quality control of soil-cement columns and solids is experimentally substantiated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. L. Vladov, V. V. Kalinin, A. V. Starovoitov, and N. V. Shalaeva, “Experience in seismoacoustic survey of soil-cement columns,” Razved. Okhrana Nedr, No. 12, 34-38 (2005).

  2. A. V. Chernyakov, O. V. Bogomolova, et al., “Quality control of geotechnical structures created by jet grouting,” Tekhnol. Seismorazved., No. 3, 97-103 (2008).

    Google Scholar 

  3. V. V. Kapustin, “Use of guided acoustic wave technologies for investigating soils and building structures,” Tekhnol. Seismorazved., No. 1, 72-78 (2012).

    Google Scholar 

  4. A. V. Chernyakov, O. V. Bogomolova, et al., “Use of a complex of geophysical and geotechnical methods for organizing quality control of hidden works and monitoring in a large urban construction,” Geotekhnika, No. 1, 4-21 (2013).

    Google Scholar 

  5. A. Arkhipov, “Check and monitoring of condition of concrete slurry wall, jet-grouting and frozen soil fences by crosshole sounding method in underground construction,” Procedia Engineer., 165, 11-18 (2016).

    Article  Google Scholar 

  6. O. S. Langhorst, B. J. Schat, et al., “Design and validation of jet grouting for the Amsterdam Central Station,” Proceedings of XIV European Conference of Soil Mechanics and Foundation Engineering, 20-23 (2007).

  7. S. Ciufegni, G. Marcheselli, et al., “New bridge over the Po river in Ostiglia,” Strade Autostrade, No. 4, 156-162 (2007).

    Google Scholar 

  8. P. Croce, A. Flora, and G. Modoni, Jet Grouting: Technology, Design, Control, CRC Press, Boca Raton (2014).

  9. P. J. Axtell and T. D. Stark, “Increase in shear modulus by soil mix and jet grout methods,” DFI Journal, 2, No. 1, 11-21 (2008).

    Article  Google Scholar 

  10. K. Meinhard, D. Adam, and R. Lackner, “Temperature measurements to determine the diameter of jet-grouted columns,” Proceedings of 11th International Conference on Geotechnical Challenges in Urban Regeneration, 26-28 (2010).

  11. M. Farooq, S. Park, et al., “Time-lapse electrical resistivity investigations for imaging the grouting injection in shallow subsurface cavities,” Sci. World J., No. 178203 (2014).

  12. R. G. Bearce, M. A. Mooney, and P. Kessouri, “Electrical resistivity imaging of laboratory soilcrete column geometry,” J. Geotech. Geoenviron., 142, No. 3, 10 (2016).

  13. R. G. Bearce, M. A. Mooney, E. Niederleithinger, and A. Revil, “Characterization of simulated soilcrete column curing using acoustic tomography,” Technical Papers of Geo-Congress 2014, 465-474 (2014).

  14. S. Mackens, T. Fechner, et al., “A new approach to determine the diameter of a jet grouted column using seismic methods,” Proceedings of SAGEEP, 142-146 (2015).

  15. J. C. G. Guerreros, E. Niederleithinger, S. Mackens, and T. Fechner, “Crosshole and downhole seismics: a new quality assurance tool for jet grout columns,” Near Surf. Geophys., 14, No. 6, 493-501 (2016).

    Article  Google Scholar 

  16. A. G. Malinin, Jet Grouting of Soils [in Russian], Stroiizdat, Mosocw (2010).

    Google Scholar 

  17. M. S. Zasorin, “Efficiency of jet-grouting for soil stabilization,” Geotekhnika, No. 3, 40-45 (2017).

    Google Scholar 

  18. P. Croce, A. Flora, S. Lirer, and G. Modoni, “Prediction of jet grouting efficiency and column average diameter,” Proceedings of ISSMGE-TC 211, 215-224 (2012).

    Google Scholar 

  19. SP 45.13330.2017, Earthworks, Bases and Foundations. Updated Edition of SNiP 3.02.01-87 [in Russian], AO Kodeks, St. Petersburg (2017).

  20. SP 291.1325800.2017, Reinforced Grouted Structures. Design Rules [in Russian], Standartinform, Moscow (2017).

  21. A. Malinin, I. Gladkov, and D. Malinin, “Experimental research of jet grouting parameters in different soil conditions,” Proceedings of GeoShanghai 2010 International Conference, 49-54 (2010).

  22. A. Flora, S. Lirer, and M. Monda, “Probability design of massive jet grouted water sealing barriers,” Proceedings of IV International Conference on Grouting and Deep Mixing, 2034-2043 (2012).

  23. J. C. Ni and W.-C. Cheng, “Quality control of double fluid jet grouting below groundwater table: Case history,” Soils Found., 54, No. 6, 1039-1053 (2014).

    Article  Google Scholar 

  24. V. V. Kapustin and M. L. Vladov, “Technical geophysics. Methods and tasks,” Geotekhnika, 12, No. 4, 72-85 (2020).

    Google Scholar 

  25. J. E. White, Seismic Waves: Generation and Propagation [Russian translation], Nedra, Moscow (1986).

    Google Scholar 

  26. G. N. Boganik and I. I. Gurvich, Seismic Exploration [in Russian], AIS, Tver (2006).

    Google Scholar 

  27. N. N. Goryainov (ed.), Use of Seismoacoustic Methods in Hydrogeology and Engineering Geology [in Russian], Nedra, Moscow (1992).

    Google Scholar 

  28. A. M. Dzagov, V. I. Sheinin, E. S. Kostenko, and D. I. Blokhin, “Regarding the scope of work related to quality control of concrete of cast-in-place and bored piles,” Geotekhnika, No. 1, 64-69 (2017).

    Google Scholar 

  29. A. A. Mukhin, V. V. Kapustin, A. A. Churkin, and I. N. Lozovskii, “Technical regulation of pile continuity testing,” Geotekhnika, 11, No. 2, 80-89 (2019).

    Google Scholar 

  30. V. A. Shevnin and I. N. Modin, Geoecological Survey of Oil Industry Enterprises [in Russian], RUSSO, Moscow (1999).

    Google Scholar 

  31. V. V. Kapustin and A. A. Churkin, “Assessment of the contact between piles and soil via the dynamic attributes of acoustic signals,” Mosc. Univ. Geol. Bull., 75, No. 4, 435-445 (2020).

    Article  Google Scholar 

  32. D. V. Shmurak, “Determination of the attenuation factor via seismoacoustic studies in wells to estimate the distribution of heterogeneities in artificial soils,” Mosc. Univ. Geol. Bull., 75, No. 5, 537-541 (2020).

    Article  Google Scholar 

  33. Guidelines for Quality Control of Hidden Works by Geophysical Methods in the Construction of Underground Facilities, Including Metro Facilities, in Moscow [in Russian], Kompleks Gradostroitel’noi Politiki i Stroitel’stva Goroda Moskvy, Moscow (2021).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Churkin.

Additional information

Translated from Osnovaniya, Fundamenty i Mekhanika Gruntov, No. 6, November-December, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapustin, V.V., Churkin, A.A., Vladov, M.L. et al. Instrumental Quality Control of Soil-Cement Columns and Solids by Seismoacoustic Methods. Soil Mech Found Eng 58, 518–526 (2022). https://doi.org/10.1007/s11204-022-09775-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11204-022-09775-x

Navigation