Skip to main content
Log in

An Extended Finite Element Method for Heat Transfer with Phase Change in Frozen Soil

  • CONSTRUCTION ON PERMAFROST
  • Published:
Soil Mechanics and Foundation Engineering Aims and scope

This paper deals with a finite element analysis of heat transfer with phase change in frozen soil in terms of the transient temperature field and the thermally induced solid-solid phase transformations. By analyzing the shortcomings of the traditional finite element method in solving the phase change problem and the characteristics of the freezing process in frozen soil, the extended finite element method was proposed to solve the heat transfer problem with phase change for permafrost engineering. Taking a quadrilateral element as an example, the extended finite element method interpolating function and solution format of the temperature field with phase change was derived. According to studies on constructing and solving the level set function, building of the stiffness matrix, and the subdivision of the elements, a program for heat transfer with phase change was proposed. The numerical solution is in good agreement with the measured value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Moes, J. Dolbow, and T. Belytschko, “A finite element method for crack growth without remeshing,” Int. J. Numer. Methods Eng., 46, 131-150 (1999).

    Article  MathSciNet  Google Scholar 

  2. T. Belytschko and T. Black, “Elastic crack growth in finite elements with minimal remeshing,” Int. J. Numer. Methods Eng., 45, 601-620(1999).

    Article  Google Scholar 

  3. C. Daux, N. Moes, J. Dolbow, N. Sukumar, and T. Belytschko, “Arbitrary branched and intersecting cracks with the extended finite element method,” Int. J. Numer. Methods Eng., 48, 1741-1760 (2000).

    Article  Google Scholar 

  4. D. Motamedi and S. Mohammadi, “Fracture analysis of composites by time independent moving-crack orthotropic X-FEM,” Int. J. Mech. Sci., 54, 20-37 (2012).

    Article  Google Scholar 

  5. L. Bouhala, Q. Shao, Y. Koutsawa, A. Younes, P. Nunez, A. Makradi, and S. Belouettar, “An X-FEM crack-tip enrichment for a crack terminating at a bi-material interface,” Eng. Fract. Mech., 102, 51-64(2013).

    Article  Google Scholar 

  6. S. S. Hosseini, H. Bayesteh, and S. Mohammadi, “Thermo-mechanical X-FEM crack propagation analysis of functionally graded materials,” Mater. Sci. Eng. A, 561, 285-302 (2013).

    Article  Google Scholar 

  7. J. He, J. Yang, Y. Wang, H. Waisman, and W. Zhang, “Probabilistic model updating for sizing of hole-edge crack using fiber bragg grating sensors and the high-order extended finite element method,” Sensors, 16, 1956(2016).

    Article  Google Scholar 

  8. J. Chessa, P. Smolinski, and T. Belytschko, “The extended finite element method (X-FEM) for solidification problems,” Int. J. Numer. Methods Eng., 53, 1959-1977(2002).

    Article  Google Scholar 

  9. Y. J. Choi, M. A. Hulsen, and H. E. H. Meijer, “Simulation of the flow of a viscoelastic fluid around a stationary cylinder using an extended finite element method,” Comput. Fluids, 57, 183-194(2012).

    Article  MathSciNet  Google Scholar 

  10. T. Q. N. Tran, H. P. Lee, and S. P. Lim, “Modelling porous structures by penalty approach in the extended finite element method,” Comput. Methods Biomech. Biomed. Eng., 16, 347-357(2013).

    Article  Google Scholar 

  11. R. Merle and J. Dolbow, “Solving thermal and phase change problems with the extended finite element method,” Comput. Mech., 28, 339-350(2002).

    Article  Google Scholar 

  12. H. Ji, D. Chopp, and J. E. Dolbow, “A hybrid extended finite element/level set method for modeling phase transformations,” Int. J. Numer. Methods Eng., 54, 1209-1233(2002).

    Article  MathSciNet  Google Scholar 

  13. L. Salvatori and N. Tosi, “Stefan problem through extended finite elements: review and further investigations,” Algorithms, 2, 1177-1220(2009).

    Article  MathSciNet  Google Scholar 

  14. M. K. Bernauer and R. Herzog, “Implementation of an X-FEM solver for the classical two-phase Stefan problem,” J. Sci. Comput., 52, 271-293(2012).

    Article  MathSciNet  Google Scholar 

  15. P. Diez, R. Cottereau, and S. Zlotnik, “A stable X-FEM formulation for multi-phase problems enforcing the accuracy of the fluxes through Lagrange multipliers,” Int. J. Numer. Methods Eng., 96, 303-322 (2013).

  16. G. Ferte, P. Massin, and N. Moes, “Interface problems with quadratic X-FEM: design of a stable multiplier space and error analysis,” Int. J. Numer. Methods Eng., 100, 834-870(2014).

    Article  MathSciNet  Google Scholar 

  17. A. Cosimo, V. Fachinotti, and A. Cardona, “An enrichment scheme for solidification problems,” Comput. Mech., 52, 17-35(2013).

    Article  MathSciNet  Google Scholar 

  18. E. Benvenuti, G. Ventura, N. Ponara, and A. Tralli, “Variationally consistent extended FE model for 3D planar and curved imperfect interfaces,” Comput. Meth. Appl. Mech. Eng., 267, 434-457(2013).

    Article  MathSciNet  Google Scholar 

  19. J. Liu and Y. Tian, “Numerical studies for the thermal regime of a roadbed with insulation on permafrost,” Cold Reg. Sci. Tech., 35, 1-13 (2002).

    Article  Google Scholar 

  20. A. Gholamzadehabolfazl, “A numerical study of a highway embankment on degrading permafrost,” M.Sc. thesis, The University of Manitoba, Canada (2015).

  21. M. C. Alfaro, G. A. Ciro, K. J. Thiessen, and Tony Ng, “Case Study of Degrading Permafrost beneath a Road Embankment,” J. Cold Reg. Eng., 23, 93-111 (2009).

    Article  Google Scholar 

  22. X. Kong, G. Dore, and F. Calmels, “Thermal modeling of heat balance through embankments in permafrost regions,” J. Cold Reg. Eng., 158, 117-127 (2018).

    Google Scholar 

  23. M. Zhang, Y. Lai, Z. Gao, and W. Yu, “Influence of boundary conditions on the cooling effect of crushed-rock embankment in permafrost regions of Qinghai-Tibetan Plateau,” Cold Reg. Sci. Tech., 44, 225-239 (2006).”

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min He.

Additional information

Translated from Osnovaniya, Fundamenty i Mekhanika Gruntov, No. 6, p. 31, November-December, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, M., Yang, Q., Li, N. et al. An Extended Finite Element Method for Heat Transfer with Phase Change in Frozen Soil. Soil Mech Found Eng 57, 497–505 (2021). https://doi.org/10.1007/s11204-021-09698-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11204-021-09698-z

Navigation