Skip to main content
Log in

Nonparametric estimation for I.I.D. paths of fractional SDE

  • Published:
Statistical Inference for Stochastic Processes Aims and scope Submit manuscript

Abstract

This paper deals with nonparametric estimators of the drift function b computed from independent continuous observations, on a compact time interval, of the solution of a stochastic differential equation driven by the fractional Brownian motion (fSDE). First, a risk bound is established on a Skorokhod’s integral based least squares oracle \({\widehat{b}}\) of b. Thanks to the relationship between the solution of the fSDE and its derivative with respect to the initial condition, a risk bound is deduced on a calculable approximation of \({\widehat{b}}\). Another bound is directly established on an estimator of \(b'\) for comparison. The consistency and rates of convergence are established for these estimators in the case of the compactly supported trigonometric basis or the \({\mathbb {R}}\)-supported Hermite basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (1964) Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover, New York, ninth dover printing, tenth gpo printing edition

  • Belomestny D, Comte F, Genon-Catalot V (2019) Sobolev–Hermite versus Sobolev nonparametric density estimation on R. Ann Inst Math Stat 71(1):29–62

    Article  MathSciNet  Google Scholar 

  • Biagini F, Hu Y, Oksendal B, Zhang T (2008) Stochastic calculus for fractional brownian motion and applications. Springer, Berlin

    Book  Google Scholar 

  • Bongioanni B, Torrea JL (2006) Sobolev spaces associated to the harmonic oscillator. Proc Indian Acad Sci (Math Sci) 116(3):337–360

    Article  MathSciNet  Google Scholar 

  • Chronopoulou A, Tindel S (2013) On inference for fractional differential equations. Stat Inference Stoch Process 16(1):29–61

    Article  MathSciNet  Google Scholar 

  • Cohen A, Davenport MA, Leviatan D (2013) On the stability and accuracy of least squares approximations. Found Comput Math 13:819–834

    Article  MathSciNet  Google Scholar 

  • Cohen A, Davenport MA, Leviatan D (2019) Correction to: On the stability and accuracy of least squares approximations. Found Comput Math 19:239

    Article  MathSciNet  Google Scholar 

  • Comte F, Genon-Catalot V (2019a) Regression function estimation on non compact support as a partly inverse problem. Ann Inst Stat Math. https://doi.org/10.1007/s10463-019-00718-2

    Article  MATH  Google Scholar 

  • Comte F, Genon-Catalot V (2019b) Nonparametric drift estimation for i.i.d. Paths of stochastic differential equations. Accepted for publication in The Annals of Statistics

  • Comte F, Lacour C (2021) Adaptive estimation of the conditional density from direct or noisy data. Preprint

  • Comte F, Marie N (2019) Nonparametric estimation in fractional SDE. Stat Infer Stoch Process 22(3):359–382

    Article  MathSciNet  Google Scholar 

  • Comte F, Genon-Catalot V, Samson A (2013) Nonparametric estimation for stochastic differential equations with random effects. Stoch Process Appl 123(7):2522–2551

    Article  MathSciNet  Google Scholar 

  • D’Argenio D, Park K (1997) Uncertain pharmacokinetics/pharmacodynamics systems: design. Estm Control Control Eng Pract 5(12):1707–1716

    Article  Google Scholar 

  • Delattre M, Lavielle M (2011) Pharmacokinetics and stochastic differential equations: model and methodology. In: Proceedings of the annual meeting of the population approach group in Europe

  • Delattre M, Lavielle M (2013) Coupling the SAEM algorithm and the extended Kalman filter for maximum likelihood estimation in mixed-effects diffusion models. Stat Interface 6:519–532

    Article  MathSciNet  Google Scholar 

  • Delattre M, Genon-Catalot V, Samson A (2013) Maximum likelihood estimation for stochastic differential equations with random effects. Scand J Stat 40:322–343

    Article  MathSciNet  Google Scholar 

  • Delattre M, Genon-Catalot V, Larédo C (2018) Parametric inference for discrete observations of diffusion processes with mixed effects. Stoch Process Appl 128:1929–1957

    Article  MathSciNet  Google Scholar 

  • Denis C, Dion C, Martinez M (2020) Procedures for multiclass classification of discrete diffusion paths. To appear in Scandinavian Journal of Statistics

  • DeVore RA, Lorentz GG (1993) Constructive approximation. Springer, Berlin

    Book  Google Scholar 

  • Dion C, Genon-Catalot V (2016) Bidimensional random effect estimation in mixed stochastic differential equations. Stat Infer Stoch Process 19:131–158

    Article  Google Scholar 

  • Ditlevsen S, De Gaetano A (2005) Mixed effects in stochastic differential equation models. REVSTAT 3:137–153

    MathSciNet  MATH  Google Scholar 

  • Donnet S, Samson A (2013) A review on estimation of stochastic differential equations for pharmacokinetic/pharmacodynamic models. Adv Drug Deliv Rev 65(7):929–939

    Article  Google Scholar 

  • Friz P, Victoir N (2010) Multidimensional stochastic processes as rough paths: theory and applications. Cambridge Studies in Applied Mathematics 120, Cambridge University Press

  • Hu Y, Nualart D (2010) Parameter estimation for fractional Ornstein–Uhlenbeck processes. Stat Probab Lett 80:1030–1038

    Article  MathSciNet  Google Scholar 

  • Hu Y, Nualart D, Zhou H (2019) Drift parameter estimation for nonlinear stochastic differential equations driven by fractional brownian motion. Stochastics 91(8):1067–1091

    Article  MathSciNet  Google Scholar 

  • Indritz J (1961) An inequality for hermite polynomials. Proc Am Math Soc 12:981–983

    Article  MathSciNet  Google Scholar 

  • Kleptsyna ML, Le Breton A (2001) Some explicit statistical results about elementary fractional type models. Nonlinear Anal 47:4783–4794

    Article  MathSciNet  Google Scholar 

  • Kutoyants Y (1994) Identification of dynamical systems with small noise. Springer, Berlin

    Book  Google Scholar 

  • Kutoyants Y (2004) Statistical inference for ergodic diffusion processes. Springer, Berlin

    Book  Google Scholar 

  • Marie N (2014) A generalized mean-reverting equation and applications. ESAIM: Probab Stat 18:799–828

    Article  MathSciNet  Google Scholar 

  • Marie N (2019) Nonparametric estimation of the trend in reflected fractional SDE. Stat Probab Lett. https://doi.org/10.1016/j.spl.2019.108659

    Article  MathSciNet  MATH  Google Scholar 

  • Marie N, Raynaud de Fitte P (2020) Almost periodic and periodic solutions of differential equations driven by the fractional brownian motion with statistical application. Working paper arXiv:2003.05800

  • Mishra MN, Prakasa Rao BLS (2011) Nonparameteric estimation of trend for stochastic differential equations driven by fractional brownian motion. Stat Inference Stoch Process 14, 2:101–109

    Article  Google Scholar 

  • Neuenkirch A, Tindel S (2014) A least square-type procedure for parameter estimation in stochastic differential equations with additive fractional noise. Stat Inference Stoch Process 17(1):99–120

    Article  MathSciNet  Google Scholar 

  • Nourdin I, Viens F (2009) Density formula and concentration inequalities with Malliavin calculus. Electron J Probab 14(78):2287–2309

    MathSciNet  MATH  Google Scholar 

  • Nualart D (2006) The Malliavin calculus and related topics. Springer, Berlin

    MATH  Google Scholar 

  • Overgaard R, Jonsson N, Tornøe C, Madsen H (2005) Non-linear mixed effects models with stochastic differential equations: implementation of an estimation algorithm. J Pharmacokinet Pharmacodyn 32:85–107

    Article  Google Scholar 

  • Picchini U, Ditlevsen S (2011) Practical estimation of high dimensional stochastic differential mixed-effects models. Comput Stat Data Anal 55:1426–1444

    Article  MathSciNet  Google Scholar 

  • Picchini U, De Gaetano A, Ditlevsen S (2010) Stochastic differential mixed-effects models. Scand J Stat 37:67–90

    Article  MathSciNet  Google Scholar 

  • Panloup F, Tindel S, Varvenne M (2020) A general drift estimation procedure for stochastic differential equations with additive fractional noise. Electron J Stat 14(1):1075–1136

    Article  MathSciNet  Google Scholar 

  • Saussereau B (2014) Nonparametric inference for fractional diffusion. Bernoulli 20(2):878–918

    Article  MathSciNet  Google Scholar 

  • Tudor CA, Viens F (2007) Statistical aspects of the fractional stochastic calculus. Ann Stat 35(3):1183–1212

    Article  MathSciNet  Google Scholar 

  • Tudor CA, Viens F (2009) Variations and estimators for self-similarity parameters via Malliavin calculus. Ann Probab 37(6):2093–2134

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank an anonymous referee for interesting remarks and helpful suggestion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Marie.

Ethics declarations

Conflict of interest

The authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest, or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Comte, F., Marie, N. Nonparametric estimation for I.I.D. paths of fractional SDE. Stat Inference Stoch Process 24, 669–705 (2021). https://doi.org/10.1007/s11203-021-09246-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11203-021-09246-4

Keywords

Mathematics Subject Classification

Navigation