Skip to main content
Log in

Adaptive efficient analysis for big data ergodic diffusion models

  • Published:
Statistical Inference for Stochastic Processes Aims and scope Submit manuscript

Abstract

We consider drift estimation problems for high dimension ergodic diffusion processes in nonparametric setting based on observations at discrete fixed time moments in the case when diffusion coefficients are unknown. To this end on the basis of sequential analysis methods we develop model selection procedures, for which we show non asymptotic sharp oracle inequalities. Through the obtained inequalities we show that the constructed model selection procedures are asymptotically efficient in adaptive setting, i.e. in the case when the model regularity is unknown. For the first time for such problem, we found in the explicit form the celebrated Pinsker constant which provides the sharp lower bound for the minimax squared accuracy normalized with the optimal convergence rate. Then we show that the asymptotic quadratic risk for the model selection procedure asymptotically coincides with the obtained lower bound, i.e this means that the constructed procedure is efficient. Finally, on the basis of the constructed model selection procedures in the framework of the big data models we provide the efficient estimation without using the parameter dimension or any sparse conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bayisa FL, Zhou Z, Cronie O, Yu J (2019) Adaptive algorithm for sparse signal recovery. Digit Signal Proc 87:10–18

    Article  Google Scholar 

  • Comte F, Genon-Catalot V, Rozenholc Y (2009) Non-parametric estimation for a discretely observed integrated diffusion model. Stoch Process Appl 119:811–834

    Article  Google Scholar 

  • Dalalyan AS (2005) Sharp adaptive estimation of the drift function for ergodic diffusion. Ann Stat 33(6):2507–2528

    Article  MathSciNet  Google Scholar 

  • Dalalyan AS, Kutoyants YuA (2002) Asymptotically efficient trend coefficient estimation for ergodic diffusion. Math Methods Stat 11(4):402–427

    MathSciNet  Google Scholar 

  • Fan J, Fan Y, Barut E (2014) Adaptive robust variable selection. Ann Stat 42(1):324–351

    Article  MathSciNet  Google Scholar 

  • Florens-Zmirou D (1993) On estimating the diffusion coefficient from discrete observations. J Appl Probab 30(4):790–804

    Article  MathSciNet  Google Scholar 

  • Fujimori K (2019) The Danzing selector for a linear model of diffusion processes. Stat Infer Stoch Process 22:475–498

    Article  Google Scholar 

  • De Gregorio A, Iacus SM (2012) Adaptive LASSO-type estimation for multivariate diffusion processes. Econ Theory 28(4):838–860

    Article  MathSciNet  Google Scholar 

  • Galtchouk LI (1978) Existence and uniqueness of a solution for stochastic equations with respect to semimartingales. Theory Probab Appl 23:751–763

    Article  MathSciNet  Google Scholar 

  • Galtchouk L, Pergamenshchikov S (2001) Sequential nonparametric adaptive estimation of the drift coefficient in diffusion processes. Math Methods Stat 10(3):316–330

    MathSciNet  MATH  Google Scholar 

  • Galtchouk L, Pergamenshchikov S (2004) Nonparametric sequential estimation of the drift in diffusion via model selection. Math Methods Stat 13:25–49

    MathSciNet  MATH  Google Scholar 

  • Galtchouk L, Pergamenshchikov S (2005) Nonparametric sequential minimax estimation of the drift coefficient in diffusion processes. Sequ Anal 24(3):303–330

    Article  MathSciNet  Google Scholar 

  • Galtchouk L, Pergamenshchikov S (2006) Asymptotically efficient sequential kernel estimates of the drift coefficient in ergodic diffusion processes. Stat Infer Stoch Process 9:1–16

    Article  MathSciNet  Google Scholar 

  • Galtchouk L, Pergamenshchikov S (2007) Uniform concentration inequality for ergodic diffusion processes. Stoch Process Appl 117:830–839

    Article  MathSciNet  Google Scholar 

  • Galtchouk L, Pergamenshchikov S (2009a) Sharp non-asymptotic oracle inequalities for nonparametric heteroscedastic regression models. J Nonparametr Stat 21:1–16

    Article  MathSciNet  Google Scholar 

  • Galtchouk L, Pergamenshchikov S (2009b) Adaptive asymptotically efficient estimation in heteroscedastic nonparametric regression. J Korean Stat Soc 38(4):305–322

    Article  MathSciNet  Google Scholar 

  • Galtchouk L, Pergamenshchikov S (2011) Adaptive sequential estimation for ergodic diffusion processes in quadratic metric. J Nonparametr Stat 23(2):255–285

    Article  MathSciNet  Google Scholar 

  • Galtchouk L, Pergamenshchikov S (2013) Uniform concentration inequality for ergodic diffusion processes observed at discrete times. Stoch Process Appl 123(1):91–109

    Article  MathSciNet  Google Scholar 

  • Galtchouk L, Pergamenshchikov S (2014) Geometric ergodicity for classes of homogeneous Markov chains. Stoch Process Appl 124(10):3362–3391

    Article  MathSciNet  Google Scholar 

  • Galtchouk L, Pergamenshchikov S (2015) Efficient pointwise estimation based on discrete data in ergodic nonparametric diffusions. Bernoulli 21(4):2569–2594

    Article  MathSciNet  Google Scholar 

  • Galtchouk L, Pergamenshchikov S (2019) Non asymptotic sharp oracle inequalities for high dimensional ergodic diffusion models. Preprint https://hal.archives-ouvertes.fr/hal-02387034 (2019)

  • Gihman II, Skorohod AV (1968) Stochastic differential equations. Naukova Dumka, Kiev

    MATH  Google Scholar 

  • Gobet E, Hoffmann M, Reiss M (2004) Nonparametric estimation of scalar diffusions based on low frequency data. Ann Stat 32(5):2223–2253

    Article  MathSciNet  Google Scholar 

  • Hoffmann M (1999) Adaptive estimation in diffusion processes. Stoch Process Appl 79:135–163

    Article  MathSciNet  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning. Data mining, inference and prediction. Springer series in statistics. Springer, Berlin

  • Jacod J (2000) Non-parametric kernel estimation of the coefficient of a diffusion. Scand J Stat 27(1):83–96

    Article  MathSciNet  Google Scholar 

  • Kabanov YM, Pergamenshchikov SM (2003) Two scale stochastic systems: asymptotic analysis and control. Applications of mathematics, stochastic modelling and applied probability, vol 49. Springer Berlin

  • Karatzas I, Shreve SE (1998a) Brownian motion and stochastic calculus. Graduate texts in mathematics, 2nd edn. Springer Science+Business Media, New York

  • Karatzas I, Shreve SE (1998b) Methods of mathematical finance. Springer, New York

    Book  Google Scholar 

  • Kutoyants YuA (1977) Estimation of the signal parameter in a Gaussian noise. Probl Inf Transm 13(4):29–38

    MathSciNet  MATH  Google Scholar 

  • Kutoyants YuA (1984a) Parameter estimation for stochastic processes. Heldeman-Verlag, Berlin

    MATH  Google Scholar 

  • Kutoyants YuA (1984b) On nonparametric estimation of trend coefficients in a diffusion process. Statistics and control of stochastic processes. Steklov seminar proceedings, Moscow, pp 230–250

    Google Scholar 

  • Kutoyants YuA (2003) Statistical inferences for ergodic diffusion processes. Springer, Berlin

    Google Scholar 

  • Konev VV, Pergamenshchikov SM (2015) Robust model selection for a semimartingale continuous time regression from discrete data. Stoch Process Appl 125:294–326

    Article  MathSciNet  Google Scholar 

  • Lamberton D, Lapeyre B (1996) Introduction to stochastic calculus applied to finance. Chapman & Hall, London

    MATH  Google Scholar 

  • Pinsker MS (1981) Optimal filtration of square integrable signals in gaussian noise. Probl Inf Transm 17:120–133

    MATH  Google Scholar 

Download references

Acknowledgements

The work of the last author was partially supported by the Russian Federal Professor program, Project No. 1.472.2016/1.4 (the Ministry of Science and Higher Education of the Russian Federation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid I. Galtchouk.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by RSF, Grant No. 20-61-47043, National Russian Research Tomsk State University, Russia.

Appendix

Appendix

1.1 Property of the penalty term

Proposition A.1

For any \(0<\varepsilon <1/2\),

$$\begin{aligned} \mathbf{E}_{\vartheta }\,\mathbf{1}_{\mathbf{G}_{*}}\,P_n(\lambda _0)&\le \frac{1}{1-2\varepsilon }\, \mathbf{E}_{\vartheta } \text{ Err}_{n}(\lambda _0)\mathbf{1}_{\mathbf{G}_{*}} +\,\frac{{\check{\mathbf{x}}}\mathbf{g}^{*}_{T}}{\varepsilon (1-2\varepsilon )T}\\&\quad +\frac{2{\check{\mathbf{x}}}\sigma _{1,*}}{n\varepsilon } + \frac{2\Vert S\Vert _{n}\sqrt{{\check{\mathbf{x}}}\sigma _{1,*}}}{\sqrt{n}} \sqrt{\mathbf{P}_{\vartheta }\left( \mathbf{G}^c_*\right) } , \end{aligned}$$

where the term \(\mathbf{g}^{*}_{T}\) is given in (3.6).

Proof

Note that on the set \(\mathbf{G}_{*}\)

$$\begin{aligned} \text{ Err}_{n}(\lambda )&=\sum ^n_{j=1}(\lambda (j) \widehat{\theta }_{j,n}-\theta _{j,n})^2 =\sum ^n_{j=1}\lambda ^2(j)\zeta ^2_{j,n}\\&\quad -2\sum ^n_{j=1}(1-\lambda (j))\lambda (j)\theta _{j,n}\zeta _{j,n} +\sum ^n_{j=1}(1-\lambda (j))^2\theta ^2_{j,n}. \end{aligned}$$

Taking into account here that

$$ \zeta ^2_{j,n}=g^2_{j,n}+\frac{{\check{\mathbf{x}}}}{n}\xi ^2_{j,n}+2\sqrt{\frac{{\check{\mathbf{x}}}}{n}}g_{j,n}\xi _{j,n}, $$

we obtain

$$ \text{ Err}_{n}(\lambda ) \ge \frac{{\check{\mathbf{x}}}}{n}\sum ^n_{j=1}\lambda ^2(j)\xi ^2_{j,n}\,+\,2\sqrt{\frac{{\check{\mathbf{x}}}}{n}}I_{1}\,-\,2\sqrt{\frac{{\check{\mathbf{x}}}}{n}}I_{2}, $$

where \(I_{1}=\sum ^n_{j=1}\lambda ^2(j)g_{j,n}\xi _{j,n}\) and \(I_{2}=\sum ^n_{j=1}(1-\lambda (j))\lambda (j)\theta _{j,n}\xi _{j,n}\). Moreover, note that, for any \(0<\varepsilon <1\),

$$ 2\sqrt{\frac{{\check{\mathbf{x}}}}{n}}I_{1} \le \frac{1}{\varepsilon }\Vert g\Vert ^2_n+\frac{\varepsilon {\check{\mathbf{x}}}}{n}\sum ^n_{j=1}\lambda ^2(j)\xi ^2_{j,n}. $$

Therefore

$$ \text{ Err}_{n}(\lambda _0)\ge \frac{(1-\varepsilon ){\check{\mathbf{x}}}}{n}\sum ^n_{j=1}\lambda ^2(j)\xi ^2_{j,n} -\frac{2\sqrt{{\check{\mathbf{x}}}}}{\sqrt{n}}I_{2}-\frac{1}{\varepsilon }\Vert g\Vert ^2_{n} $$

and

$$\begin{aligned} \mathbf{E}_{\vartheta }\mathbf{1}_{\mathbf{G}_{*}}\text{ Err}_{n}(\lambda _0) \ge \frac{(1-\varepsilon ){\check{\mathbf{x}}}}{n}\mathbf{E}_{\vartheta } \mathbf{1}_{\mathbf{G}_{*}}\sum ^n_{j=1}\lambda ^2(j)\xi ^2_{j,n} - \frac{2\sqrt{{\check{\mathbf{x}}}}}{\sqrt{n}} \mathbf{E}_{\vartheta }\mathbf{1}_{\mathbf{G}_{*}}\,I_{2} -\frac{1}{\varepsilon }\mathbf{E}_{\vartheta }\mathbf{1}_{\mathbf{G}_{*}}\,\Vert g\Vert ^2_{n} . \end{aligned}$$

Taking into account here the definition of \(\mathbf{B}(\cdot )\) in (6.1) and that \(\mathbf{E}_{\vartheta }I_{2}=0\) we can rewrite the last inequality as

$$\begin{aligned} \mathbf{E}_{\vartheta }\mathbf{1}_{\mathbf{G}_{*}}\text{ Err}_{n}(\lambda _0)&\ge (1-\varepsilon ) \mathbf{E}_{\vartheta }\mathbf{1}_{\mathbf{G}_{*}}\,P_{n}(\lambda ) +\frac{(1-\varepsilon )}{\sqrt{n}}\mathbf{E}_{\vartheta } \mathbf{1}_{\mathbf{G}_{*}}\mathbf{B}(\lambda ^{2}) \\&\quad + \frac{2\sqrt{{\check{\mathbf{x}}}}}{\sqrt{n}} \mathbf{E}_{\vartheta }\mathbf{1}_{(\mathbf{G}_{*})^{c}}\,I_{2} -\frac{1}{\varepsilon }\mathbf{E}_{\vartheta }\mathbf{1}_{\mathbf{G}_{*}}\,\Vert g\Vert ^2_{n} . \end{aligned}$$

Now Propositions 6.1– 6.2 imply that

$$\begin{aligned} \mathbf{E}_{\vartheta }\mathbf{1}_{\mathbf{G}_{*}}\text{ Err}_{n}(\lambda _0)&\ge (1-2\varepsilon ) \mathbf{E}_{\vartheta }\mathbf{1}_{\mathbf{G}_{*}}\,P_{n}(\lambda ) -\frac{2{\check{\mathbf{x}}}\sigma _{1,*}}{n\varepsilon } \\&\quad - \frac{2\Vert S\Vert _{n}\sqrt{{\check{\mathbf{x}}}\sigma _{1,*}}}{\sqrt{n}} \sqrt{\mathbf{P}_{\vartheta }\left( \mathbf{G}^c\right) }\, -\frac{1}{\varepsilon }\mathbf{E}_{\vartheta }\mathbf{1}_{\mathbf{G}_{*}}\,\Vert g\Vert ^2_{n} . \end{aligned}$$

Hence Proposition A.1. \(\square \)

1.2 Asymptotic analysis tools

Proposition A.2

Assume that the conditions \(\mathbf{A}_1)\)\(\mathbf{A}_2)\) hold. Then, for any \(\mathbf{x}_{0}<\mathbf{x}_{1}\) and \(a>0\),

$$ \lim _{T\rightarrow \infty }\, T^{a} \max _{\mathbf{x}_{0}\le x\le \mathbf{x}_{1}} \sup _{\vartheta \in \Theta } \mathbf{P}_{\vartheta }(|{\widetilde{q}}_{T}(x)-\mathbf{q}_{\vartheta }(x)|> \upsilon _{T}) =0. $$

The proof is the same as for Lemma A.3 in Galtchouk and Pergamenshchikov (2015), so it is omitted.

Proof of Proposition 3.3

First, note that, to show the limit (3.7) it suffices to check that, for any \(a>0\),

$$\begin{aligned} \lim _{T\rightarrow \infty }\,{T^{1-a}}\, \sup _{\mathbf{x}_{0}\le z\le \mathbf{x}_{1}} \sup _{\vartheta \in \Theta }\, \left( \mathbf{E}_{\vartheta }\,\mathbf{g}^{2}_{1}(z)\mathbf{1}_{\Gamma (z)} +\mathbf{E}_{\vartheta }\,\mathbf{g}^{2}_{2}(z)\mathbf{1}_{\Gamma (z)} \right) =0. \end{aligned}$$
(A.1)

Indeed, using the definition of \(\mathbf{g}_{1}(z)\) in (2.16) we represent it on the set \(\Gamma (z)\) as \( \mathbf{g}_{1}(z) =\mathbf{g}_{1,1}(z)+\mathbf{g}_{1,2}(z)\), where

$$ \mathbf{g}_{1,1}(z)=\frac{1}{\delta H(z)} \,(1-\sqrt{\varkappa (z)})\sqrt{\varkappa (z)} \chi _{\tau (z)}(z,h)\, \int ^{t_{\tau (z)}}_{t_{\tau (z)-1}}\,S(y_{u})\,\mathrm {d}u $$

and

$$ \mathbf{g}_{1,2}(z)=\frac{1}{\delta H(z)} \sum ^{\tau (z)}_{j=N_{0}+1}\,{\widetilde{\varkappa }}_{j}(z)\, \chi _{j}(z,h)\, \int ^{t_{j}}_{t_{j-1}}\,S(y_{u})\,\mathrm {d}u -S(z). $$

To estimate the term \(\mathbf{g}_{1,2}(z)\) note that

$$ \mathbf{g}^{2}_{1,2}(z)\le \frac{\Psi _{\tau (z)}(z)}{\delta H^{2}(z)}, \quad \Psi _{\tau (z)}(z)= \chi _{\tau (z)}(z,h)\, \int ^{t_{\tau (z)}}_{t_{\tau (z)-1}}\,S^{2}(y_{u})\,\mathrm {d}u. $$

Moreover, note also here, that for some constant \(C>0\)

$$ \max _{N_{0}<j\le N}\, \max _{t_{j-1}\le u\le t_{j}} \sup _{\vartheta \in \Theta }\, \mathbf{E}_{\vartheta }\left( S^{2}(y_{u})\vert {{\mathcal {F}}}_{t_{j-1}}\right) \le C(1+y^{2}_{t_{j-1}}) . $$

From the definition (2.13) it follows that \(\{\tau (z)=j\}\in {{\mathcal {F}}}_{t_{j-1}}\), i.e.

$$ \mathbf{E}_{\vartheta }\left( \Psi _{j}(z) \vert {{\mathcal {F}}}_{t_{j-1}} \right) \le \delta C(1+y^{2}_{t_{j-1}})\chi _{j}(z,h)\le \delta C. $$

Therefore, for some \(C>0\)

$$ \mathbf{E}_{\vartheta }\left( \Psi _{\tau (z)}(z) \vert {{\mathcal {F}}}_{t_{N_{0}}} \right) = \sum ^{N}_{j=N_{0}+1} \mathbf{E}_{\vartheta }\left( \mathbf{1}_{\{\tau (z)=j\}} \mathbf{E}_{\vartheta }\left( \Psi _{j}(z) \vert {{\mathcal {F}}}_{t_{j-1}} \right) \vert {{\mathcal {F}}}_{t_{N_{0}}} \right) \le \delta C $$

and

$$ \mathbf{E}_{\vartheta }\left( \mathbf{g}^{2}_{1,2}(z) \vert {{\mathcal {F}}}_{t_{N_{0}}} \right) \le \frac{C}{H^{2}(z)}. $$

Using the definition (2.12), the conditions \(\mathbf{A}_{1}\))–\(\mathbf{A}_{2}\)), and Propositions 4.1–4.2 from Galtchouk and Pergamenshchikov (2015) we obtain the property (3.7). Hence Proposition 3.3. \(\square \)

Proof of Proposition 3.4

Note that

$$ \mathbf{E}_{\vartheta }\vert \widehat{\sigma }_{l}-\sigma ^{2}_{l} \vert \le \frac{1}{\upsilon _{T}\delta (N-N_{0})h}\,\mathbf{E}_{\vartheta }\vert \widehat{b}_{l}-b^{2}(z_{l})\vert . $$

Taking into account the definition of \(N_{0}\) in (2.9) we obtain through Proposition 3.1 from Galtchouk and Pergamenshchikov (2019) the limit equality (3.11). Hence Proposition 3.4. \(\square \)

Now, we study the heteroscedastic property in the model (3.4). To this end we study asymptotic properties of the average variance \(\mathbf{s}_{n}\) defined in (7.10).

Proposition A.3

Assume that the condition \(\mathbf{A}_1)\) holds. Then

$$\begin{aligned} \lim _{T\rightarrow \infty }\, \sup _{\vartheta \in \Theta _{k,r}} \, \mathbf{E}_{\vartheta } \left| \mathbf{s}_{n} - \frac{\mathbf{J}_{\vartheta }}{{\check{\mathbf{x}}}} \right| \,=0 . \end{aligned}$$
(A.2)

Proof

Using the definition of \(\sigma _{l}\) in (3.4) and taking into account the form of h given in (2.13), we can represent the term \(\mathbf{s}_{n}\) as

$$\begin{aligned} \mathbf{s}_{n} = \frac{1}{{\check{\mathbf{x}}}} \sum _{l=1}^{n} {\widetilde{b}}_{\vartheta }(z_{l}) (z_{l}-z_{l-1}) +\, R_{1}(\vartheta )\,+\,R_{2}(\vartheta ), \end{aligned}$$
(A.3)

where \({\widetilde{b}}_{\vartheta }(x)=b^2(x)/\mathbf{q}_{\vartheta }(x)\),

$$ R_{1}(\vartheta )= \frac{1}{{\check{\mathbf{x}}}} \left( \frac{n^{2}}{\delta \,(N-N_{0})} -1 \right) \sum _{l=1}^{n} \, {\widetilde{b}}_{\vartheta }(z_{l})\, (z_{l}-z_{l-1}) $$

and

$$ R_{2}(\vartheta )=\sum _{l=1}^{n}\frac{nb^2(x_l)}{\delta \,h\,(N-N_{0})} \left( \frac{1}{2{\widetilde{q}}_{T}(z_{l})-\upsilon _{T}}\, -\,\frac{1}{2\mathbf{q}_{\vartheta }(z_{l})}\right) (z_{l}-z_{l-1}). $$

First of all note, that the function \({\widetilde{b}}_{\vartheta }(\cdot )\) and its derivative are uniformly bounded, i.e. \( \sup _{\vartheta \in \Theta _{k,r}} \max _{\mathbf{x}_{0}\le z\le \mathbf{x}_{1}}\, \left( {\widetilde{b}}_{\vartheta }(z) + \vert {\widetilde{b}}^{\prime }_{\vartheta }(z)\vert \right) <\infty \). Therefore,

$$ \lim _{T\rightarrow \infty }\, \sup _{\vartheta \in \Theta _{k,r}} \left| \sum _{l=1}^{n} {\widetilde{b}}_{\vartheta }(z_{l}) (z_{l}-z_{l-1}) - \mathbf{J}_{\vartheta } \right| =0. $$

As the second term (A.3), note that, in view of the condition (3.2),

$$ \lim _{T\rightarrow \infty } \, \frac{n^{2}}{\delta \,(N-N_{0})} \,=1. $$

Therefore, \( \lim _{T\rightarrow \infty } \sup _{\vartheta \in \Theta _{k,r}} \, \vert R_{1}(\vartheta ) \vert =0\). Moreover, taking into account that \(2{\widetilde{q}}_{T}(z_{l})-\upsilon _{T}>\upsilon ^{1/2}_{T}\), we obtain, for sufficiently large T, that for some \(C>0\)

$$ |R_{2}(\vartheta )| \le \,C\left( \sum _{l=1}^{n}\,\upsilon ^{-1/2}_{T}\left( |{\widetilde{q}}_{T}(z_{l})-\mathbf{q}_{\vartheta }(z_{l})|\right) (z_{l}-z_{l-1}) +\sqrt{\upsilon _{T}} \right) . $$

Note here, that for any \(1\le l\le n\) and for sufficiently large T,

$$ \upsilon ^{-1/2}_{T} \mathbf{E}_{\vartheta } \, |{\widetilde{q}}_{T}(z_{l})-\mathbf{q}_{\vartheta }(z_{l})| \le \,2\upsilon ^{-1}_{T} \mathbf{P}_{\vartheta }(|{\widetilde{q}}_{T}(z_{l})-\mathbf{q}_{\vartheta }(z_{l})|>\upsilon _{T}) + \sqrt{\upsilon _{T}} $$

and, therefore, Proposition A.2 implies \( \lim _{T\rightarrow \infty } \sup _{\vartheta \in \Theta _{k,r}} \,\vert R_{2}(\vartheta ) \vert =0\). \(\square \)

Lemma A.4

Let f be an absolutely continuous \([\mathbf{x}_{0},\mathbf{x}_{1}] \rightarrow {{\mathbb {R}}}\) function with \(\Vert {\dot{f}}\Vert <\infty \) and g be \([\mathbf{x}_{0},\mathbf{x}_{1}] \rightarrow {{\mathbb {R}}}\) a step-wise function \( g(z)=\sum _{j=1}^{n}\,c_{j}\,\chi _{(z_{j-1},z_{j}]}(z)\), where \(c_{j}\) are some constants and the sequence \((z_{j})_{0\le j\le n}\) is given in (3.1). Then, for any \( {\widetilde{\varepsilon }}>0\), the function \(\Delta =f-g\) satisfies the following inequalities

$$ \frac{1}{{\widetilde{\varepsilon }}}\frac{\Vert {\dot{f}}\Vert ^{2}}{n^{2}}{\check{\mathbf{x}}}^2 - \frac{\Vert \Delta \Vert ^{2}}{1+{\widetilde{\varepsilon }}} \le \Vert \Delta \Vert ^{2}_{n}\le (1+{\widetilde{\varepsilon }})\Vert \Delta \Vert ^{2} + \left( 1+\frac{1}{{\widetilde{\varepsilon }}}\right) \frac{\Vert {\dot{f}}\Vert ^{2}}{n^{2}}{\check{\mathbf{x}}}^2. $$

The proof is given in Lemma A.2 from Konev and Pergamenshchikov (2015).

1.3 Properties of the trigonometric basis

Lemma A.5

For any \(1\le j\le n\) and any \({\widetilde{\varepsilon }}>0\), the discrete trigonometric Fourier coefficients \((\theta _{j,n})_{1\le j\le n}\) introduced in (4.3) for \(S\in W_{k,r}\) are bounded as

$$\begin{aligned} \theta ^{2}_{j,n} \, \le \,(1+{\widetilde{\varepsilon }}) \,\theta ^{2}_{j} \, +(1+{\widetilde{\varepsilon }}^{-1})\, \frac{{\check{r}}_{k}}{n^{2k}} ,\quad {\check{r}}_{k}=\frac{2r(\pi ^2+1){\check{\mathbf{x}}}^{2k}}{\pi ^{2k}} , \end{aligned}$$
(A.4)

where the coefficients \(\theta _{j}\) are defined in (5.5).

Proof

First we represent the function S in \({{\mathcal {L}}}[\mathbf{x}_{0},\,\mathbf{x}_{1}]\) as

$$\begin{aligned} S(x)=\sum ^{n}_{l=1}\,\theta _{l}\,\phi _{l}(x) +\Delta _{n}(x) \quad \text{ and }\quad \Delta _{n}(x)=\sum _{l>n}\,\theta _{l}\,\phi _{l}(x) . \end{aligned}$$
(A.5)

Since \( \theta _{j,n}=(S,\phi _{j})_{n} =\theta _{j} + (\Delta _{n},\phi _{j})_{n}\), we get, that for any \(0<{\widetilde{\varepsilon }}<1\),

$$ \theta ^{2}_{j,n} \le (1+{\widetilde{\varepsilon }}) \theta ^{2}_{j} + (1+{\widetilde{\varepsilon }}^{-1}) \Vert \Delta _{n}\Vert ^{2}_{n} . $$

Moreover, through Lemma A.4 and the definition (5.5) we deduce

$$ \Vert \Delta _{n}\Vert ^{2}_{n} \le 2\sum _{l>n}\,\theta ^{2}_{l} + 2 \frac{\Vert {\dot{\Delta }}_{n}\Vert ^{2}{\check{\mathbf{x}}}^{2}}{n^{2}} \le \frac{2 r }{a_{n+1}} + \frac{2\Vert {\dot{\Delta }}_{n}\Vert ^{2}{\check{\mathbf{x}}}^{2}}{n^{2}} . $$

Taking into account here that \(2[l/2]\ge l-1\) for \(l\ge 2\), we get

$$ \Vert \Delta _{n}\Vert ^{2}_{n}\le \frac{2r{\check{\mathbf{x}}}^{2k}}{\pi ^{2k}n^{2k}} + 2 \frac{\Vert {\dot{\Delta }}_{n}\Vert ^{2}{\check{\mathbf{x}}}^{2}}{n^{2}} . $$

Similarly, for any \(n\ge 1\),

$$\begin{aligned} \Vert {\dot{\Delta }}_{n}\Vert ^{2}&= \frac{(2\pi )^{2}}{{\check{\mathbf{x}}}^{2}}\, \sum _{l>n}\,\theta ^{2}_{l}\,[l/2]^{2} = \frac{{\check{\mathbf{x}}}^{2(k-1)}}{\pi ^{2(k-1)}}\, \sum _{l>n}\,\frac{a_{l}\theta ^{2}_{l}}{(2[l/2])^{2(k-1)}} \nonumber \\&\le \frac{{\check{\mathbf{x}}}^{2(k-1)}}{\pi ^{2(k-1)}} \sum _{l>n}\,\frac{a_{l}\theta ^{2}_{l}}{(l-1)^{2(k-1)}} \le \frac{r{\check{\mathbf{x}}}^{2(k-1)}}{\pi ^{2(k-1)}n^{2(k-1)}} . \end{aligned}$$
(A.6)

Hence Lemma A.5. \(\square \)

Lemma A.6

For any \(n\ge 2\), \(1\le m< n\) and \(r>0\), the coefficients \((\theta _{j,n})_{1\le j\le n}\) of functions S from the class \(W_{k,r}\) satisfy, for any \({\widetilde{\varepsilon }}>0\), the following inequality

$$\begin{aligned} \sum ^{n}_{j=m+1} \theta ^{2}_{j,n} \, \le \,(1+{\widetilde{\varepsilon }}) \,\sum _{j\ge m+1}\,\theta ^{2}_{j} \, +(1+{\widetilde{\varepsilon }}^{-1})\, \frac{{\check{r}}_{1}}{n^{2} m^{2(k-1)}} , \end{aligned}$$
(A.7)

where \({\check{r}}_{1}=r{\check{\mathbf{x}}}^{2k}/\pi ^{2(k-1)}\).

Proof

First we note that

$$\begin{aligned} \sum ^{n}_{j=m+1} \theta ^{2}_{j,n}&=\min _{x_{1},\ldots ,x_{m}} \,\Vert S-\sum ^{m}_{j=1}\,x_{j}\phi _{j} \Vert ^{2}_{n} \le \Vert \Delta _{m}\Vert ^{2}_{n}, \end{aligned}$$

where the function \(\Delta _{m}(\cdot )\) is defined in (A.5). By applying Lemma A.4 with \(f=\Delta _{m}, g=0\), and taking into account the inequality (A.6), we obtain the bound (A.7). Hence Lemma A.6\(\square \)

Lemma A.7

For any \(k\ge 1\),

$$\begin{aligned} \sup _{n\ge \,2}n^{-k} \sup _{x\in [\mathbf{x}_{0},\mathbf{x}_{1}]}\,\left| \sum ^n_{l=2}\, l^{k}\overline{\phi }_{l}(x)\right| \,\le \,2^{k}, \end{aligned}$$
(A.8)

where \(\overline{\phi }_{l}(x)={\check{\mathbf{x}}}\phi ^2_{l}(x)-1\).

Proof of this result is given in Lemma A.2 from Galtchouk and Pergamenshchikov (2009a).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galtchouk, L.I., Pergamenshchikov, S.M. Adaptive efficient analysis for big data ergodic diffusion models. Stat Inference Stoch Process 25, 127–158 (2022). https://doi.org/10.1007/s11203-021-09241-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11203-021-09241-9

Keywords

Mathematics Subject Classification

Navigation