Skip to main content
Log in

Adaptive estimation of the stationary density of a stochastic differential equation driven by a fractional Brownian motion

  • Published:
Statistical Inference for Stochastic Processes Aims and scope Submit manuscript

Abstract

We build and study a data-driven procedure for the estimation of the stationary density f of an additive fractional SDE. To this end, we also prove some new concentrations bounds for discrete observations of such dynamics in stationary regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baudoin F, Hairer M (2007) A version of Hörmander’s theorem for the fractional Brownian motion. Probab Theory Relat Fields 139(3–4):373–395

    Article  MATH  Google Scholar 

  • Bertin K, Klutchnikoff N (2017) Pointwise adaptive estimation of the marginal density of a weakly dependent process. J Stat Plan Inference 187:115–129

    Article  MathSciNet  MATH  Google Scholar 

  • Bertin K, Klutchnikoff N, León J, Prieur C (2018) Adaptive density estimation on bounded domains under mixing conditions. HAL

  • Besalú M, Kohatsu-Higa A, Tindel S (2016) Gaussian-type lower bounds for the density of solutions of SDEs driven by fractional Brownian motions. Ann Probab 44(1):399–443

    Article  MathSciNet  MATH  Google Scholar 

  • Bosq D (2012) Nonparametric statistics for stochastic processes: estimation and prediction, vol 110. Springer

  • Bosq D et al (1997) Parametric rates of nonparametric estimators and predictors for continuous time processes. Ann Stat 25(3):982–1000

    Article  MathSciNet  MATH  Google Scholar 

  • Castellana J, Leadbetter M (1986) On smoothed probability density estimation for stationary processes. Stoch Process Their Appl 21(2):179–193

    Article  MathSciNet  MATH  Google Scholar 

  • Comte F, Marie N (2018) Nonparametric estimation in fractional sde. arXiv preprintarXiv:1806.00115

  • Comte F, Merlevède F (2002) Adaptive estimation of the stationary density of discrete and continuous time mixing processes. ESAIM Probab Stat 6:211–238

    Article  MathSciNet  Google Scholar 

  • Comte F, Merlevède F (2005) Super optimal rates for nonparametric density estimation via projection estimators. Stoch Process Their Appl 115(5):797–826

    Article  MathSciNet  MATH  Google Scholar 

  • Dalalyan A (2001) Estimation non-paramétrique asymptotiquement efficace pour des processus de diffusion ergodiques. Ph.D. thesis, Le Mans

  • Djellout H, Guillin A, Wu L (2004) Transportation cost-information inequalities and applications to random dynamical systems and diffusions. Ann Probab 32(3B):2702–2732

    Article  MathSciNet  MATH  Google Scholar 

  • Goldenshluger A, Lepski O (2011a) Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality. Ann Stat 39(3):1608–1632

    Article  MathSciNet  MATH  Google Scholar 

  • Goldenshluger A, Lepski O (2011b) Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality. Ann Stat 39(3):1608–1632

    Article  MathSciNet  MATH  Google Scholar 

  • Goldenshluger A, Lepski O (2014) On adaptive minimax density estimation on \(\text{ r }\hat{}\) d. Probab Theory Relat Fields 159(3–4):479–543

    MathSciNet  MATH  Google Scholar 

  • Hairer M (2005) Ergodicity of stochastic differential equations driven by fractional Brownian motion. Ann Probab 33(2):703–758

    Article  MathSciNet  MATH  Google Scholar 

  • Klutchnikoff N (2014) Pointwise adaptive estimation of a multivariate function. Math Methods Stat 23(2):132–150

    Article  MathSciNet  MATH  Google Scholar 

  • Kutoyants YA (1998) Efficient density estimation for ergodic diffusion processes. Stat Infer Stoch Process 1(2):131–155

    Article  MathSciNet  MATH  Google Scholar 

  • Lepskiĭ OV (1990) A problem of adaptive estimation in Gaussian white noise. Teor Veroyatnost i Primenen 35(3):459–470

    MathSciNet  Google Scholar 

  • Mishra M, Prakasa Rao BL (2011) Nonparametric estimation of trend for stochastic differential equations driven by fractional brownian motion. Stat Infer Stoch Process 14(2):101–109

    Article  MathSciNet  MATH  Google Scholar 

  • Parzen E (1962) On estimation of a probability density function and mode. Ann Math Stat 33(3):1065–1076

    Article  MathSciNet  MATH  Google Scholar 

  • Rigollet P, Hütter J-C (2017) High dimensional statistics. Lecture notes (MIT)

  • Rosenblatt M et al (1956) Remarks on some nonparametric estimates of a density function. Ann Math Stat 27(3):832–837

    Article  MathSciNet  MATH  Google Scholar 

  • Saussereau B (2012) Transportation inequalities for stochastic differential equations driven by a fractional brownian motion. Bernoulli 18(1):1–23

    Article  MathSciNet  MATH  Google Scholar 

  • Schmisser E (2013) Nonparametric estimation of the derivatives of the stationary density for stationary processes. ESAIM Probab Stat 17:33–69

    Article  MathSciNet  MATH  Google Scholar 

  • Tribouley K, Viennet G (1998) \(l_p\) adaptive density estimation in a \(beta\) mixing framework. Annales de l’IHP Probabilités et Statistiques 34:179–208

    MATH  Google Scholar 

  • Tsybakov AB (1998) Pointwise and sup-norm sharp adaptive estimation of functions on the Sobolev classes. Ann Stat 26(6):2420–2469

    Article  MathSciNet  MATH  Google Scholar 

  • Varvenne M (2019) Concentration inequalities for stochastic differential equations with additive fractional noise. Electron J Probab 24:1–22

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors have been supported by Fondecyt Projects 1171335 and 1190801, and Mathamsud 19-MATH-06 and 20-MATH-05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Panloup.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertin, K., Klutchnikoff, N., Panloup, F. et al. Adaptive estimation of the stationary density of a stochastic differential equation driven by a fractional Brownian motion. Stat Inference Stoch Process 23, 271–300 (2020). https://doi.org/10.1007/s11203-020-09218-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11203-020-09218-0

Keywords

Mathematics Subject Classification

Navigation