Skip to main content
Log in

Nonparametric drift estimation for diffusions with jumps driven by a Hawkes process

  • Published:
Statistical Inference for Stochastic Processes Aims and scope Submit manuscript

Abstract

We consider a 1-dimensional diffusion process X with jumps. The particularity of this model relies in the jumps which are driven by a multidimensional Hawkes process denoted N. This article is dedicated to the study of a nonparametric estimator of the drift coefficient of this original process. We construct estimators based on discrete observations of the process X in a high frequency framework with a large horizon time and on the observations of the process N. The proposed nonparametric estimator is built from a least squares contrast procedure on subspace spanned by trigonometric basis vectors. We obtain adaptive results that are comparable with the one obtained in the nonparametric regression context. We finally conduct a simulation study in which we first focus on the implementation of the process and then on showing the good behavior of the estimator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aït-Sahalia Y, Cacho-Diaz J, Laeven RJ (2015) Modeling financial contagion using mutually exciting jump processes. J Financ Econ 117(3):585–606

    Google Scholar 

  • Amorino C, Gloter A (2018) Contrast function estimation for the drift parameter of ergodic jump diffusion process. arXiv preprint arXiv:1807.08965

  • Bacry E, Muzy JF (2014) Second order statistics characterization of Hawkes processes and non-parametric estimation. arXiv preprint arXiv:1401.0903

  • Bacry E, Dayri K, Muzy J (2012) Non-parametric kernel estimation for symmetric Hawkes processes. Application to high frequency financial data. Eur Phys J 85:157

    Google Scholar 

  • Bacry E, Delattre S, Hoffmann M, Muzy JF (2013) Some limit theorems for Hawkes processes and application to financial statistics. Stoch Process Their Appl 123(7):2475–2499

    MathSciNet  MATH  Google Scholar 

  • Bacry E, Mastromatteo I, Muzy JF (2015) Hawkes processes in finance. Mark Microstruct Liq 1(01):1550005

    Google Scholar 

  • Baraud Y (2002) Model selection for regression on a random design. ESAIM Probab Stat 6:127–146

    MathSciNet  MATH  Google Scholar 

  • Baraud Y, Comte F, Viennet G (2001a) Adaptive estimation in autoregression or -mixing regression via model selection. Ann Stat 29(3):839–875. https://doi.org/10.1214/aos/1009210692

    Article  MathSciNet  MATH  Google Scholar 

  • Baraud Y, Comte F, Viennet G (2001b) Model selection for (auto-)regression with dependent data. ESAIM Probab Stat 5:33–49

    MathSciNet  MATH  Google Scholar 

  • Bibby BM, Sørensen M (1995) Martingale estimation functions for discretely observed diffusion processes. Bernoulli 1:17–39

    MathSciNet  MATH  Google Scholar 

  • Bonnet A, Rivoirard V, Picard F (2018) Modeling spatial genomic interactions with the Hawkes model. bioRxiv p 214874

  • Brémaud P, Massoulié L (1996) Stability of nonlinear Hawkes processes. Ann Probab 24:1563–1588

    MathSciNet  MATH  Google Scholar 

  • Carmona R, Fouque JP, Sun LH (2013) Mean field games and systemic risk. Available SSRN

  • Comte F, Genon-Catalot V (2019) Nonparametric drift estimation for iid paths of stochastic differential equations. hal-02083474

  • Comte F, Genon-Catalot V, Rozenholc Y (2007) Penalized nonparametric mean square estimation of the coefficients of diffusion processes. Bernoulli 13(2):514–543

    MathSciNet  MATH  Google Scholar 

  • Daley D, Vere-Jones D (2007) An introduction to the theory of point processes: volume II: general theory and structure. Springer, Berlin

    MATH  Google Scholar 

  • Dassios A, Zhao H (2013) Exact simulation of Hawkes process with exponentially decaying intensity. Electron Commun Probab 18(62):1–13

    MathSciNet  MATH  Google Scholar 

  • Delattre S, Fournier N, Hoffmann M (2016) Hawkes processes on large networks. Ann Appl Probab 26(1):216–261

    MathSciNet  MATH  Google Scholar 

  • DeVore R, Lorentz G (1993) Constructive approximation, vol 303. Springer, Berlin

    MATH  Google Scholar 

  • Dion C (2014) New adaptive strategies for nonparametric estimation in linear mixed models. J Stat Plan Inference 150:30–48

    MathSciNet  MATH  Google Scholar 

  • Dion C, Lemler S, Löcherbach E (2019) Exponential ergodicity for diffusions with jumps driven by a Hawkes process. arXiv preprint arXiv:1904.06051

  • Ditlevsen S, Löcherbach E (2017) Multi-class oscillating systems of interacting neurons. Stoch Process Their Appl 127(6):1840–1869

    MathSciNet  MATH  Google Scholar 

  • Donnet S, Samson A (2013) A review on estimation of stochastic differential equations for pharmacokinetic/pharmacodynamic models. Adv Drug Deliv Rev 65(7):929–939

    Google Scholar 

  • Duarte A, Galves A, Löcherbach E, Ost G (2016) Estimating the interaction graph of stochastic neural dynamics. arXiv preprint arXiv:1604.00419

  • El Karoui N, Peng S, Quenez MC (1997) Backward stochastic differential equations in finance. Math Finance 7(1):1–71

    MathSciNet  MATH  Google Scholar 

  • Gloter A (2000) Discrete sampling of an integrated diffusion process and parameter estimation of the diffusion coefficient. ESAIM Probab Stat 4:205–227

    MathSciNet  MATH  Google Scholar 

  • Gobet E (2002) Lan property for ergodic diffusions with discrete observations. Ann Inst H Poincaré Probab Stat 38(5):711–737

    MathSciNet  MATH  Google Scholar 

  • Gobet E, Matulewicz G (2016) Parameter estimation of Ornstein-Uhlenbeck process generating a stochastic graph. Stat Inference Stoch Process 20:1–25

    MathSciNet  MATH  Google Scholar 

  • Gobet E, Hoffmann M, Reiß M (2004) Nonparametric estimation of scalar diffusions based on low frequency data. Ann Stat 32(5):2223–2253

    MathSciNet  MATH  Google Scholar 

  • Györfi L, Kohler M, Krzyzak A, Walk H (2006) A distribution-free theory of nonparametric regression. Springer, Berlin

    MATH  Google Scholar 

  • Hansen N, Reynaud-Bouret P, Rivoirard V (2015) Lasso and probabilistic inequalities for multivariate point processes. Bernoulli 21(1):83–143. https://doi.org/10.3150/13-BEJ562

    Article  MathSciNet  MATH  Google Scholar 

  • Has’minskii R (1980) Stochastic stability of differential equations. Sijthoff & Noordhoff, New York

    Google Scholar 

  • Hawkes A (1971) Spectra of some self-exciting and mutually exciting point processes. Biometrika 58(1):83–90

    MathSciNet  MATH  Google Scholar 

  • Hawkes A, Oakes D (1974) A cluster process representation of a self-exciting process. J Appl Probab 11(3):493–503

    MathSciNet  MATH  Google Scholar 

  • Hoffmann M (1999) Adaptive estimation in diffusion processes. Stoch Process Their Appl 79(1):135–163

    MathSciNet  MATH  Google Scholar 

  • Höpfner R (2007) On a set of data for the membrane potential in a neuron. Math Biosci 207(2):275–301

    MathSciNet  MATH  Google Scholar 

  • Höpfner R, Löcherbach E, Thieullen M (2016) Ergodicity and limit theorems for degenerate diffusions with time periodic drift. Application to a stochastic Hodgkin–Huxley model. ESAIM Probab Stat 20:527–554

    MathSciNet  MATH  Google Scholar 

  • Jahn P, Berg R, Hounsgaard J, Ditlevsen S (2011) Motoneuron membrane potentials follow a time inhomogeneous jump diffusion process. J Comput Neurosci 31(3):563–579

    MathSciNet  Google Scholar 

  • Jaisson T, Rosenbaum M (2015) Limit theorems for nearly unstable Hawkes processes. Ann Appl Probab 25(2):600–631

    MathSciNet  MATH  Google Scholar 

  • Kessler M, Sørensen M (1999) Estimating equations based on eigenfunctions for a discretely observed diffusion process. Bernoulli 5(2):299–314

    MathSciNet  MATH  Google Scholar 

  • Kirchner M (2017) An estimation procedure for the Hawkes process. Quant Finance 17(4):571–595

    MathSciNet  MATH  Google Scholar 

  • Klein T, Rio E (2005) Concentration around the mean for maxima of empirical processes. Ann Probab 33(3):1060–1077

    MathSciNet  MATH  Google Scholar 

  • Le Gall J (2010) Calcul stochastique et processus de markov. Notes de cours

  • Lemonnier R, Vayatis N (2014) Nonparametric Markovian learning of triggering kernels for mutually exciting and mutually inhibiting multivariate Hawkes processes. In: Joint European conference on machine learning and knowledge discovery in databases. Springer, Berlin, pp 161–176

  • Lukasik M, Srijith P, Vu D, Bontcheva K, Zubiaga A, Cohn T (2016) Hawkes processes for continuous time sequence classification: an application to rumour stance classification in twitter. In: Proceedings of the 54th annual meeting of the association for computational linguistics (volume 2: short papers), vol 2, pp 393–398

  • Mancini C (2009) Non-parametric threshold estimation for models with stochastic diffusion coefficient and jumps. Scand J Stat 36(2):270–296

    MathSciNet  MATH  Google Scholar 

  • Masuda H (2007) Ergodicity and exponential \(\beta \)-mixing bounds for multidimensional diffusions with jumps. Stoch Process Their Appl 117(1):35–56

    MathSciNet  MATH  Google Scholar 

  • Parisi G, Sourlas N (1992) Supersymmetric field theories and stochastic differential equations. World Scientific, Singapore

    MATH  Google Scholar 

  • Rambaldi M, Pennesi P, Lillo F (2015) Modeling foreign exchange market activity around macroeconomic news: Hawkes-process approach. Phys Rev E 91:012819

    Google Scholar 

  • Renault E, Touzi N (1996) Option hedging and implied volatilities in a stochastic volatility model 1. Math Finance 6(3):279–302

    MATH  Google Scholar 

  • Reynaud-Bouret P, Roy E (2007) Some non asymptotic tail estimates for Hawkes processes. Bull Belgian Math Soc Simon Stevin 13(5):883–896

    MathSciNet  MATH  Google Scholar 

  • Reynaud-Bouret P, Rivoirard V, Tuleau-Malot C (2013) Inference of functional connectivity in neurosciences via Hawkes processes. In: 2013 IEEE global conference on signal and information processing (GlobalSIP). IEEE, pp 317–320

  • Schmisser E (2014a) Nonparametric adaptive estimation of the drift for a jump diffusion process. Stoch Process Their Appl 124:883–914

    MathSciNet  MATH  Google Scholar 

  • Schmisser E (2014b) Nonparametric estimation of coefficients of a diffusion with jumps. Hal

  • Shimizu Y, Yoshida N (2006) Estimation of parameters for diffusion processes with jumps from discrete observations. Stat Inference Stoch Process 9(3):227–277

    MathSciNet  MATH  Google Scholar 

  • Tankov P, Voltchkova E (2009) Jump-diffusion models: a practitioner’s guide. Banque et Marchés 99(1):24

    MATH  Google Scholar 

  • Vasicek O (1977) An equilibrium characterization of the term structure. J Financ Econ 5(2):177–188

    MATH  Google Scholar 

  • Vere-Jones D, Ozaki T (1982) Some examples of statistical estimation applied to earthquake data. Ann Inst Stat Math 34(1):189–207

    Google Scholar 

  • Veretennikov A (1997) On polynomial mixing bounds for stochastic differential equations. Stoch Process Their Appl 70(1):115–127

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very greatfull to CNRS for the financial support PEPS. They also thank Gilles Pages for the fruitful discussions. The authors wish to thank Patricia Reynaud Bouret for her advice and her listening. Finally, the authors are very grateful to Eva Löcherbach who supported the project and helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte Dion.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Theoretical results

Appendix: Theoretical results

1.1 Gronwall’s lemma

Lemma 7.1

Let \(\phi , \psi \) and y be three non negative continuous functions on [ab], that satisfy

$$\begin{aligned} \forall t\in [a,b], \quad y(t)\le \phi (t)+\int _a^t\psi (s)y(s)ds. \end{aligned}$$

Then

$$\begin{aligned} \forall t\in [a,b], \quad y(t)\le \phi (t)+\int _a^t\phi (s)\psi (s)\exp \Big (\int _s^t\psi (u) du\Big )ds. \end{aligned}$$

1.2 Talagrand’s inequality

The following result follows from the Talagrand concentration inequality (see Klein and Rio 2005).

Theorem 7.2

Consider \(n \in {\mathbb {N}}^*, {\mathcal {F}}\) a class at most countable of measurable functions, and \((X_i)_{i\in \{1,\ldots ,n\}}\) a family of real independent random variables. One defines, for all \(f\in {\mathcal {F}}\),

$$\begin{aligned} \nu _n(f) =\frac{1}{n} \sum _{i=1}^{n} (f(X_i)-{\mathbb {E}}[f(X_i)]). \end{aligned}$$

Supposing there are three positive constants MH and v such that \(\underset{f\in {\mathcal {F}}}{\sup } \Vert f\Vert _{\infty } \le M\), \({\mathbb {E}}[\underset{f\in {\mathcal {F}}}{\sup } |\nu _n(f)| ] \le H\), and \(\underset{f\in {\mathcal {F}}}{\sup } ({1}/{n}) \sum _{i=1}^{n} \mathrm {Var}(f(X_i)) \le v\), then for all \(\alpha >0\),

$$\begin{aligned} {\mathbb {E}}\left[ \left( \underset{f\in {\mathcal {F}}}{\sup } |\nu _n(f)|^2-2(1+2\alpha )H^2 \right) _+ \right]\le & {} \frac{4}{b} \left( \frac{v}{n} \exp \left( -b \alpha \frac{n H^2}{v} \right) \right. \\&+ \left. \frac{49M^2}{b C^2(\alpha )n^2} \exp \left( -\frac{\sqrt{2}b C(\alpha )\sqrt{\alpha }}{7}\frac{nH}{M} \right) \right) \end{aligned}$$

with \(C(\alpha )=(\sqrt{1+\alpha }-1) \wedge 1\), and \(b=\frac{1}{6}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dion, C., Lemler, S. Nonparametric drift estimation for diffusions with jumps driven by a Hawkes process. Stat Inference Stoch Process 23, 489–515 (2020). https://doi.org/10.1007/s11203-020-09213-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11203-020-09213-5

Keywords

Navigation