Skip to main content
Log in

Nonparametric estimation in fractional SDE

  • Published:
Statistical Inference for Stochastic Processes Aims and scope Submit manuscript

Abstract

This paper deals with the consistency and a rate of convergence for a Nadaraya–Watson estimator of the drift function of a stochastic differential equation driven by an additive fractional noise. The results of this paper are obtained via both some long-time behavior properties of Hairer and some properties of the Skorokhod integral with respect to the fractional Brownian motion. These results are illustrated on the fractional Ornstein–Uhlenbeck process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bajja S, Es-Sebaiy K, Viitasaari L (2017) Least square estimator of fractional Ornstein–Uhlenbeck processes with periodic mean. J Korean Stat Soc 36(4):608–622

    Article  MathSciNet  MATH  Google Scholar 

  • Bosq D (1996) Nonparametric statistics for stochastic processes: estimation and prediction. Springer, Berlin

    Book  MATH  Google Scholar 

  • Cheridito P, Kawaguchi H, Maejima M (2003) Fractional Ornstein–Uhlenbeck processes. Electron J Probab 8(3):1–14

    MathSciNet  MATH  Google Scholar 

  • Chronopoulou A, Tindel S (2013) On inference for fractional differential equations. Stat Inference Stoch Process 16(1):29–61

    Article  MathSciNet  MATH  Google Scholar 

  • Friz P, Hairer M (2014) A course on rough paths. Springer, Berlin

    Book  MATH  Google Scholar 

  • Friz P, Victoir N (2010) Multidimensional stochastic processes as rough paths: theory and applications. Cambridge studies in applied mathematics, vol 120. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Hairer M (2005) Ergodicity of stochastic differential equations driven by fractional Brownian motion. Ann Probab 33(3):703–758

    Article  MathSciNet  MATH  Google Scholar 

  • Hairer M, Ohashi A (2007) Ergodic theory for SDEs with extrinsic memory. Ann Probab 35(5):1950–1977

    Article  MathSciNet  MATH  Google Scholar 

  • Hairer M, Pillai NS (2013) Ergodicity of hypoelliptic SDEs driven by fractional Brownian motion. Annales de l’IHP 47(4):2544–2598

    MATH  Google Scholar 

  • Hu Y, Nualart D (2010) Parameter estimation for fractional Ornstein–Uhlenbeck processes. Stat Probab Lett 80:1030–1038

    Article  MathSciNet  MATH  Google Scholar 

  • Hu Y, Nualart D, Zhou H (2018) Drift parameter estimation for nonlinear stochastic differential equations driven by fractional Brownian motion. arXiv:1803.01032v1

  • Kleptsyna ML, Le Breton A (2001) Some explicit statistical results about elementary fractional type models. Nonlinear Anal 47:4783–4794

    Article  MathSciNet  MATH  Google Scholar 

  • Kubilius K, Skorniakov V (2016) On some estimators of the Hurst index of the solution of SDE driven by a fractional Brownian motion. Stat Probab Lett 109:159–167

    Article  MathSciNet  MATH  Google Scholar 

  • Kutoyants Y (2004) Statistical inference for ergodic diffusion processes. Springer, Berlin

    Book  MATH  Google Scholar 

  • Lejay A (2010) Controlled differential equations as Young integrals: a simple approach. J Differ Equ 249:1777–1798

    Article  MathSciNet  MATH  Google Scholar 

  • Lindgren G (2006) Lectures on stationary stochastic processes. Ph.D. course of Lund’s University

  • Mishra MN, Prakasa Rao BLS (2011) Nonparameteric estimation of trend for stochastic differential equations driven by fractional Brownian motion. Stat Inference Stoch Process 14(2):101–109

    Article  MathSciNet  MATH  Google Scholar 

  • Mishura Y, Ralchenko K (2014) On drift parameter estimation in models with fractional Brownian motion by discrete observations. Austrian J Stat 43(3–4):217–228

    Google Scholar 

  • Neuenkirch A, Tindel S (2014) A least square-type procedure for parameter estimation in stochastic differential equations with additive fractional noise. Stat Inference Stoch Process 17(1):99–120

    Article  MathSciNet  MATH  Google Scholar 

  • Nualart D (2006) The Malliavin calculus and related topics. Springer, Berlin

    MATH  Google Scholar 

  • Puig B, Poirion F, Soize C (2002) Non-Gaussian simulation using Hermite polynomial expansion: convergences and algorithms. Probab Eng Mech 17:253–264

    Article  Google Scholar 

  • Revuz D, Yor M (1999) Continuous Martingales and Brownian motion. A series of comprehensive studies in mathematics, vol 293, 3rd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  • Saussereau B (2014) Nonparametric inference for fractional diffusion. Bernoulli 20(2):878–918

    Article  MathSciNet  MATH  Google Scholar 

  • Taqqu MS (1975) Weak convergence to fractional Brownian motion and to the Rosenblatt process. Z Warscheinlichkeitstheorie verw Gebiete 31:287–302

    Article  MathSciNet  MATH  Google Scholar 

  • Tsybakov AB (2009) Introduction to nonparametric estimation. Revised and extended from the 2004 French original. Translated by Vladimir Zaiats. Springer Series in Statistics. Springer, New York

  • Tudor CA, Viens F (2007) Statistical aspects of the fractional stochastic calculus. Ann Stat 35(3):1183–1212

    Article  MathSciNet  MATH  Google Scholar 

  • Tudor CA, Viens F (2009) Variations and estimators for self-similarity parameters via Malliavin calculus. Ann Probab 37(6):2093–2134

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Marie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Comte, F., Marie, N. Nonparametric estimation in fractional SDE. Stat Inference Stoch Process 22, 359–382 (2019). https://doi.org/10.1007/s11203-019-09196-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11203-019-09196-y

Keywords

Navigation