Skip to main content
Log in

On the consistency of the MLE for Ornstein–Uhlenbeck and other selfdecomposable processes

  • Published:
Statistical Inference for Stochastic Processes Aims and scope Submit manuscript

Abstract

In this paper we give easy to verify conditions for the strong consistency of the maximum likelihood estimator (MLE) in the case when data is sampled from a parametric family of selfdecomposable distributions. The difficulty arises from the fact that standard conditions for the consistency of the MLE are based on the pdf, which, for most selfdecomposable distributions, is not available in a closed form. Instead, our conditions are based on properties of the Lévy triplet (i.e. the Lévy measure, the Gaussian part, and the shift) of the distribution. Further, we extend out results to certain selfdecomposable stochastic processes, and, in particular, we give conditions in the case when the data is sampled from a Lévy or an Ornstein–Uhlenbeck process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (1972) Handbook of mathematical functions, 9th edn. Dover Publications, New York

    MATH  Google Scholar 

  • Aoyama T, Maejima M, Rosiński J (2008) A subclass of type \(G\) selfdecomposable distributions on \({\mathbb{R}}^d\). J Theor Probab 21:14–34

    Article  MathSciNet  MATH  Google Scholar 

  • Barndorff-Nielsen OE, Shephard N (2001) Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics. J R Stat Soc Ser B 62(2):167–241

    Article  MathSciNet  MATH  Google Scholar 

  • Barndorff-Nielsen OE, Shephard N (2002a) Econometric analysis of realized volatility and its use in estimating stochastic volatility models. J R Stat Soc Ser B 64(2):253–280

    Article  MathSciNet  MATH  Google Scholar 

  • Barndorff-Nielsen OE, Shephard N (2002b) Normal modified stable processes. Theory Probab Math Stat 65:1–20

    MathSciNet  Google Scholar 

  • Bianchi ML, Rachev ST, Kim YS, Fabozzi FJ (2010) Tempered stable distributions and processes in finance: numerical analysis. In: Corazza M, Pizzi C (eds) Mathematical and statistical methods for actuarial sciences and finance. Springer, Dordrecht, pp 33–42

    Chapter  Google Scholar 

  • Bianchi ML, Rachev ST, Fabozzi FJ (2014) Tempered stable Ornstein–Uhlenbeck processes: a practical view. Bank of Italy Temi di Discussione, Working Paper No. 912

  • Brorsen BW, Yang SR (1990) Maximum likelihood estimates of symmetric stable distribution parameters. Commun Stat Simul Comput 19(4):1459–1464

    Article  MATH  Google Scholar 

  • Cao L, Grabchak M (2014) Smoothly truncated Lévy flights: toward a realistic mobility model. IPCCC ’14: Proceedings of the 33rd International Performance Computing and Communications Conference, p 8

  • Carr P, Geman H, Madan DB, Yor M (2002) The fine structure of asset returns: an empirical investigation. J Bus 75(2):305–332

    Article  Google Scholar 

  • Cont R, Tankov P (2004) Financial modeling with jump processes. Chapman & Hall, Boca Raton

    MATH  Google Scholar 

  • DuMouchel WH (1973) On the asymptotic normality of the maximum-likelihood estimate when sampling from a stable distribution. Ann Stat 1(5):948–952

    Article  MathSciNet  MATH  Google Scholar 

  • Eberlein E (2001) Application of generalized hyperbolic Lévy motions to finance. In: Barndorff-Nielsen OE, Mikosch T, Resnick SI (eds) Lévy processes: theory and applications. Birkäuser, Boston, pp 319–336

    Chapter  Google Scholar 

  • Genon-Catalot V, Jeantheau T, Larédo C (2000) Stochastic volatility models as hidden Markov models and statistical applications. Bernoulli 6(6):1051–1079

    Article  MathSciNet  MATH  Google Scholar 

  • Grabchak M (2012) On a new class of tempered stable distributions: moments and regular variation. J Appl Probab 49(4):1015–1035

    Article  MathSciNet  MATH  Google Scholar 

  • Grabchak M (2014) Does value-at-risk encourage diversification when losses follow tempered stable or more general Lévy processes? Ann Financ 10(4):553–568

    Article  MathSciNet  MATH  Google Scholar 

  • Grabchak M, Molchanov S (2014) Limit theorems and phase transitions for two models of summation of i.i.d. random variables with a parameter. Teoriya Veroyatnostei i ee Primeneniya 59(2):340–364

    Article  Google Scholar 

  • Grabchak M, Samorodnitsky G (2010) Do financial returns have finite or infinite variance? A paradox and an explanation. Quant Financ 10(8):883–893

    Article  MathSciNet  MATH  Google Scholar 

  • Hougaard P (1986) Survival models for heterogeneous populations derived from stable distributions. Biometrika 73(2):387–396

    Article  MathSciNet  MATH  Google Scholar 

  • Kallenberg O (2002) Foundations of modern probability, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  • Kawai R, Masuda H (2011) Exact discrete sampling of finite variation tempered stable Ornstein–Uhlenbeck processes. Monte Carlo Methods Appl 17(3):279–300

    Article  MathSciNet  MATH  Google Scholar 

  • Kawai R, Masuda H (2012) Infinite variation tempered stable Ornstein–Uhlenbeck processes and discrete observations. Commun Stat Simul Comput 41(1):125–130

    Article  MathSciNet  MATH  Google Scholar 

  • Koponen I (1995) Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. Phys Rev E 52(1):1197–1199

    Article  Google Scholar 

  • Küchler U, Tappe S (2008a) Bilateral gamma distributions and processes in financial mathematics. Stoch Process Appl 118(2):261–283

    Article  MathSciNet  MATH  Google Scholar 

  • Küchler U, Tappe S (2008b) On the shapes of bilateral Gamma densities. Stat Probab Lett 78(15):2478–2484

    Article  MathSciNet  MATH  Google Scholar 

  • Küchler U, Tappe S (2013) Tempered stable distributions and processes. Stoch Process Appl 123(12):4256–4293

    Article  MathSciNet  MATH  Google Scholar 

  • Mantegna RN, Stanley HE (1994) Stochastic process with ultraslow convergence to a Gaussian: the truncated Lévy flight. Phys Rev Lett 73(22):2946–2949

    Article  MathSciNet  MATH  Google Scholar 

  • Masuda H (2007) Ergodicity and exponential \(\beta \)-mixing for multidimensional diffusions with jumps. Stoch Process Appl 117(1):35–56

    Article  MathSciNet  MATH  Google Scholar 

  • McCulloch JH (1998) Linear regression with stable disturbances. In: Adler R, Feldman R, Taqqu M (eds) A practical guide to heavy tails. Birkäuser, Boston, pp 359–376

    Google Scholar 

  • Neumann MH, Reiß M (2009) Nonparametric estimation for Lévy processes from low-frequency observations. Bernoulli 15(1):223–248

    Article  MathSciNet  MATH  Google Scholar 

  • Nolan JP (2001) Maximum likelihood estimation and diagnostics for stable distributions. In: Barndorff-Nielsen OE, Mikosch T, Resnick SI (eds) Lévy processes: theory and applications. Birkäuser, Boston, pp 379–400

    Chapter  Google Scholar 

  • Palmer KJ, Ridout MS, Morgan BJT (2008) Modelling cell generation times by using the tempered stable distribution. J R Stat Soc Ser C (Appl Stat) 57(4):379–397

    Article  MathSciNet  MATH  Google Scholar 

  • Rachev ST, Kim YS, Bianchi ML, Fabozzi FJ (2011) Financial models with levy processes and volatility clustering. John Wiley & Sons Ltd., Chichester

    Book  MATH  Google Scholar 

  • Rachev ST, Mittnik S (2000) Stable paretian models in finance. John Wiley & Sons Ltd., Chichester

    MATH  Google Scholar 

  • Rocha-Arteaga A, Sato K (2003) Topics in infinitely divisible distributions and Lévy processes. Aportaciones Mathemáticas, Investigación 17, Sociedad Matemática Mexicana

  • Rosiński J (2007) Tempering stable processes. Stoch Process Appl 117(6):677–707

    Article  MathSciNet  MATH  Google Scholar 

  • Samorodnitsky G, Taqqu MS (1994) Stable Non-Gaussian random processes: stochastic models with infinite variance. Chapman & Hall, New York

    MATH  Google Scholar 

  • Sato K (1999) Lévy processes and infinitely divisible distributions. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Schoutens W (2003) Lévy processes in finance: pricing financial derivatives. John Wiley & Sons Ltd., Chichester

    Book  Google Scholar 

  • Steutal FW, Van Harn K (2004) Infinite divisibility of probability distributions on the real line. Marcel Dekker Inc, New York

    Google Scholar 

  • Terdik G, Woyczyński WA (2006) Rosiński measures for tempered stable and related Ornstien–Uhlenbeck processes. Probab Math Stat 26(2):213–243

    MATH  Google Scholar 

  • Valdivieso L, Schoutens W, Tuerlinckx F (2009) Maximum likelihood estimation in processes of Ornstein–Uhlenbeck type. Stat Inference Stoch Process 12(1):1–19

    Article  MathSciNet  MATH  Google Scholar 

  • Tweedie MCK (1984) An index which distinguishes between some important exponential families. In Ghosh JK, Roy J (eds.) Statistics: applications and new directions. Proceedings of the Indian Statistical Institute Golden Jubilee International Conference. Indian Statistical Institute, Calcutta, pp 579–604

  • Wald A (1949) Note on the consistency of the maximum-likelihood estimate. Ann Math Stat 20(4):595–601

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang S, Zhang X (2009) On the transition law of tempered stable Ornstein–Uhlenbeck processes. J Appl Probab 46(3):721–731

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author wishes to thank Professor Gennady Samorodnitsky for the benefit of several discussions and the two anonymous referees whose comments led to improvements in the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Grabchak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grabchak, M. On the consistency of the MLE for Ornstein–Uhlenbeck and other selfdecomposable processes. Stat Inference Stoch Process 19, 29–50 (2016). https://doi.org/10.1007/s11203-015-9118-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11203-015-9118-9

Keywords

Mathematics Subject Classification

Navigation