On asymptotic distribution of parameter free tests for ergodic diffusion processes

  • Yury A. KutoyantsEmail author


We consider two problems of constructing of goodness of fit tests for ergodic diffusion processes. The first one is concerned with a composite basic hypothesis for a parametric class of diffusion processes, which includes the Ornstein–Uhlenbeck and simple switching processes. In this case we propose asymptotically parameter free tests of Cramér-von Mises type. The basic hypothesis in the second problem is simple and we propose asymptotically distribution free tests for a wider class of trend coefficients.


Cramér-von Mises tests Ergodic diffusion process  Goodness of fit test Asymptotically distribution free 

Mathematics Subject Classfication (2000)

62M02 62G10 62G20 


  1. Borodin AN, Salminen P (2002) Handbook of Brownian motion: facts and formulae, 2nd edn. Birkhäuser, BaselCrossRefGoogle Scholar
  2. Choulakian V, Stephens MA (2001) Goodness-of-fit tests for the generalized Pareto distribution. Technometrics 43:478–484CrossRefMathSciNetGoogle Scholar
  3. Dachian S, Kutoyants YuA (2003) On cusp estimation for ergodic diffusion. J Stat Plan Inference 117:153–166CrossRefzbMATHMathSciNetGoogle Scholar
  4. Dachian S, Kutoyants Yu A (2007) On the goodness-of-fit tests for some continuous time processes. In: Vonta F (ed) Statistical models and methods for biomedical and technical systems. Birkhäuser, Boston, pp 395–413Google Scholar
  5. Darling DA (1955) The Cramér–Smirnov test in the parametric case. Ann Math Stat 26:1–20CrossRefzbMATHMathSciNetGoogle Scholar
  6. Dzhaparidze KO, Nikulin MS (1982) Probability distributions of the Kolmogorov and omega-square statistics for continuous distributions with shift and scale parameters. J Sov Math 20(3):2147–2164CrossRefzbMATHGoogle Scholar
  7. Durbin J (1973) Weak convergence of the sample distribution function when parameters are estimated. Ann Stat 1(2):279–290CrossRefzbMATHMathSciNetGoogle Scholar
  8. Durett R (1996) Stochastic calculus. A practical introduction. CRC Press, Boca RatonGoogle Scholar
  9. Fournie E (1992) Un test de type Kolmogorov–Smirnov pour processus de diffusions ergodic. Rapport de Recherche, 1696, INRIA, Sophia-AntipolisGoogle Scholar
  10. Ibragimov IA, Khasminskii RZ (1981) Statistical estimation. Springer, New YorkCrossRefzbMATHGoogle Scholar
  11. Kac M, Kiefer J, Wolfowitz J (1955) On tests of normality and other tests of goodness of fit based on distance methodes. Ann Math Stat 26:189–211CrossRefzbMATHMathSciNetGoogle Scholar
  12. Kutoyants YuA (2004) Statistical inference for ergodic diffusion processes. Springer, LondonCrossRefzbMATHGoogle Scholar
  13. Kutoyants YuA (2010) On the goodness-of-fit testing for ergodic diffusion processes. J Nonparametric Stat 22(4):529–543CrossRefzbMATHMathSciNetGoogle Scholar
  14. Lehmann EL, Romano JP (2005) Testing statistical hypotheses, 3rd edn. Springer, NewYorkzbMATHGoogle Scholar
  15. Martynov G (2010) Note on Cramér–von Mises test with estimated parameters. Publ Math Debr 76(3):341–346zbMATHMathSciNetGoogle Scholar
  16. Negri I, Nishiyama Y (2009) Goodness of fit test for ergodic diffusion processes. Ann Inst Stat Math 61:919–928CrossRefMathSciNetGoogle Scholar
  17. Negri I, Zhou L (2012) On goodness-of-fit testing for ergodic diffusion process with shift parameter. Stat Inference Stoch ProcessesGoogle Scholar
  18. Revuz D, Yor M (1991) Continuous Martingales and Brownian motion. Springer, NewYorkCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Laboratoire de Statistique et ProcessusUniversité du MaineLe Mans Cédex 9France
  2. 2.Laboratory of Quantitive Finance, Higher School of EconomicsNational Research UniversityMoscowRussia

Personalised recommendations