Skip to main content
Log in

The normal approximation rate for the drift estimator of multidimensional diffusions

  • Published:
Statistical Inference for Stochastic Processes Aims and scope Submit manuscript

Abstract

We consider the problem of the density and drift estimation by the observation of a trajectory of an \({\mathbb{R}^{d}}\)-dimensional homogeneous diffusion process with a unique invariant density. We construct estimators of the kernel type based on discretely sampled observations and study their asymptotic distribution. An estimate of the rate of normal approximation is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ait-Sahalia Y (2004) Closed-form likelihood expansions for multivariate diffusions. Preprint available under http://www.princeton.edu/~yacine/research.htm

  • Bandi FM, Moloche G (2002) On the functional estimation of multivariate diffusion processes. Preprint available under http://gsbwww.uchicago.edu/fac/federico.bandi/research/

  • Bianchi A (2006) Problems of statistical inference for multidimensional diffusions. PhD Thesis, Università degli Studi di Milano and Université Paris 6

  • Bianchi A (2007) Nonparametric trend coefficient estimation for multidimensional diffusions. C R Acad Sci Paris 345(2): 101–105

    MATH  MathSciNet  Google Scholar 

  • Bosq D (1998) Nonparametric statistics for stochastic processes. Estimation and prediction. Lecture notes in statistics, vol 110. Springer, New York

  • Bosq D, Merlevede F, Peligrad M (1999) Asymptotic normality for kernels estimators of densities in discrete and continuous time. J Multivar Anal 68(1): 78–95

    Article  MATH  MathSciNet  Google Scholar 

  • Brugière P (1991) Estimation de la variance d’un processus de diffusion dans le cas multidimensionnel. C R Acad Sci Paris, t 312(13), Série I:999–1005

  • Brugière P (1993) Théorème de limite centrale pour un estimateur non paramétrique de la variance d’un processus de diffusion multidimensionnel. Ann Inst Henri Poincaré, Probabilités et Statistiques 29(3): 357–389

    MATH  Google Scholar 

  • Bulinskii AV, Shashkin AP (2004) Rates in the CLT for sums of dependent multiindexed random vectors. J Math Sci 122(4): 3343–3358

    Article  MATH  MathSciNet  Google Scholar 

  • Capasso V, Bakstein D (2005) An introduction to continuous-time stochastic processes. Birkhäuser, Boston

    MATH  Google Scholar 

  • Castellana JV, Leadbetter MR (1986) On smoothed probability density estimation for stationary processes. Stoch Process Appl 21: 179–193

    Article  MATH  MathSciNet  Google Scholar 

  • Eidel’man SD (1969) Parabolic systems. North-Holland, Amsterdam

    MATH  Google Scholar 

  • Engl HW, Kügler P (2005) Nonlinear inverse problems: theoretical aspects and some industrial applications. In: Capasso and Périaux (eds) Multidisciplinary methods for analysis optimization and control of complex systems, Mathematics in industry series. Springer, Berlin, pp 3–48

    Chapter  Google Scholar 

  • Friedman A (1964) Partial differential equations of parabolic type. Prentice-Hall, Englewood Cliffs, NJ

    MATH  Google Scholar 

  • Has’minskii RZ (1980) Stochastic stability of differential equations. Sijthoff and Noordhoff, Alphen aan den Rijn, Rockville

  • Karatzas I, Shreve S (1988) Brownian motion and stochastic calculus. Springer, New York

    MATH  Google Scholar 

  • Kutoyants YuA (2004) Statistical inference for ergodic diffusion processes. Springer Series in Statistics, New York

    MATH  Google Scholar 

  • Masry E (1983) Probability density estimation from sampled data. IEEE trans inf theory 29: 696–709

    Article  MATH  MathSciNet  Google Scholar 

  • Prakasa Rao BLS (1977) Berry-Esseen type bound for density estimators of stationary Markov processes. Bull Math Stat 17: 15–21

    MATH  MathSciNet  Google Scholar 

  • Prakasa Rao BLS (1999) Statistical inference for diffusion type processes. Arnold, London

    MATH  Google Scholar 

  • Qian Z, Zheng W (2004) A representation formula for transition probability densities of diffusions and applications. Stoch Process Appl 111: 57–76

    Article  MATH  MathSciNet  Google Scholar 

  • Risken H (1989) The Fokker-Planck Equation. Springer, Berlin

    MATH  Google Scholar 

  • Roussas GG (1997) A course in mathematical statistics. Academic Press, San Diego

    MATH  Google Scholar 

  • Shiryaev AN (1996) Probability. Springer, New York

    Google Scholar 

  • Soize C (1994) The Fokker–Planck equation for stochastic dynamical systems and its explicit steady state solutions. World Scientific, Singapore

    MATH  Google Scholar 

  • Veretennikov AY (1987) Bounds for the mixing rate in the theory of stochastic equations. Theory Probab Appl 32(2): 273–281

    Article  MATH  MathSciNet  Google Scholar 

  • Veretennikov AY (1997) On polynomial mixing bounds for stochastic differential equations. Stoch Process Appl 70: 115–127

    Article  MATH  MathSciNet  Google Scholar 

  • Veretennikov AY (1999) On Castellana-Leadbetter’s condition for diffusion density estimation. Statist Inf Stoch Proc 2: 1–9

    Article  MATH  MathSciNet  Google Scholar 

  • Veretennikov AY (2005) On subexponential mixing rate for Markov processes. Theory Probab Appl 49(1): 110–122

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annamaria Bianchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bianchi, A. The normal approximation rate for the drift estimator of multidimensional diffusions. Stat Inference Stoch Process 12, 251–268 (2009). https://doi.org/10.1007/s11203-008-9032-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11203-008-9032-5

Keywords

Navigation