Skip to main content
Log in

Solution of a Busemann problem

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We give a solution to the problem posed by Busemann which is as follows: Determine the noncompact Busemann G-spaces such that for every two geodesics there exists a motion taking one to the other. We prove that each of these spaces is isometric to the Euclidean space or to one of the noncompact symmetric spaces of rank 1 (of negative sectional curvature).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Busemann H., “Groups of motions transitive on sets of geodesics,” Duke Math. J., 24, 539–544 (1956).

    Article  MathSciNet  Google Scholar 

  2. Busemann H., The Geometry of Geodesics [Russian translation], Fizmatgiz, Moscow (1962).

    MATH  Google Scholar 

  3. Besse A. L., Manifolds All of Whose Geodesics Are Closed, Springer-Verlag, Berlin, Heidelberg, and New York (1978).

    MATH  Google Scholar 

  4. Wolf J. A., Spaces of Constant Curvature, Wilmington, Delaware (1984).

    Google Scholar 

  5. Wang H.-C., “Two theorems on metric spaces,” Pacific J. Math., 1, 473–480 (1951).

    MATH  MathSciNet  Google Scholar 

  6. Wang H.-C., “Two-point homogeneous spaces,” Ann. Math., 55, 177–191 (1952).

    Article  Google Scholar 

  7. Tits J., “ Étude de certains espaces métriques,” Bull. Soc. Math. Belg., 1952, 44–52 (1953).

    MATH  MathSciNet  Google Scholar 

  8. Kuratowski K., Topology. Vol. 2 [Russian translation], Mir, Moscow (1969).

    Google Scholar 

  9. Berestovskii V. N., “Homogeneous Busemann G-spaces,” Siberian Math. J., 23, No. 2, 141–150 (1982).

    Article  MathSciNet  Google Scholar 

  10. Iwasawa K., “On some types of topological groups,” Ann. Math., 50, 507–558 (1949).

    Article  MathSciNet  Google Scholar 

  11. Gorbatsevich V. V., “Transitive isometry groups of aspheric Riemannian manifolds,” Siberian Math. J., 42, No. 6, 1036–1046 (2001).

    Article  MathSciNet  Google Scholar 

  12. Adams J. F., Lectures on Lie Groups, W. A. Benjamin, New York and Amsterdam (1969).

    MATH  Google Scholar 

  13. Aleksandrov P. S. and Pasynkov B. A., Introduction to Dimension Theory [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  14. Busemann R, “Quasihyperbolic geometry,” Rend. Circ. Mat. Palermo (2), 4, 256–267 (1955).

    Article  MATH  MathSciNet  Google Scholar 

  15. Gribanova I. A., “On a quasihyperbolic plane,” Siberian Math. J., 40, No. 2, 245–257 (1999).

    MathSciNet  Google Scholar 

  16. Kaizer V. V., “Conjugate points of left-invariant metrics on Lie groups,” Russian Math., 34, No. 11, 32–44 (1990).

    MathSciNet  Google Scholar 

  17. Szabó Z. I., “A short topological proof for the symmetry of 2 point homogeneous spaces,” Invent. Math., 106, No. 1, 61–64 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  18. Montgomery D. and Samelson H., “Transformation groups of spheres,” Ann. Math., 44, 454–470 (1943).

    Article  MathSciNet  Google Scholar 

  19. Borel A., “Some remarks about Lie groups transitive on spheres and tori,” Bull. Amer. Math. Soc., 55, 580–587 (1949).

    Article  MATH  MathSciNet  Google Scholar 

  20. Singh V., “Two point homogeneous manifolds,” Nederl. Akad. Wetensch. Proc. Ser. A, 68, 746–753 (1965).

    MATH  Google Scholar 

  21. Freudenthal H., “Zweifache Homogenitat und Symmetrie.,” Nederl. Akad. Wetensch. Proc. Ser. A, 70, 18–22 (1967).

    MATH  MathSciNet  Google Scholar 

  22. Manturov O. V., “Homogeneous Riemannian spaces with irreducible rotation group,” in: Tensor and Vector Analysis. Geometry, Mechanics and Physics, Gordon and Breach, Amsterdam, 1998, pp. 101–192.

    Google Scholar 

  23. Wolf J. A., “The geometry and structure of isotropy irreducible homogeneous spaces,” Acta Math., 120, 59–148 (1968). Correction: Acta Math., 152, 141-142 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  24. Krämer M., “Eine Klassification bestimmter Untergruppen zusammenhangender Liegruppen,” Comm. Algebra, 3, 691–737 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  25. Wang M. and Ziller W., “On isotropy irreducible Riemannian manifolds,” Acta Math., 166, 223–261 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  26. Wang M. and Ziller W., “Symmetric spaces and strongly isotropy irreducible spaces,” Math. Ann., 296, 285–326 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  27. Heintze E. and Ziller W., “Isotropy irreducible spaces and s-representations,” Differ. Geom. Appl., 6, 181–188 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  28. Berestovskii V. N., Homogeneous manifolds with intrinsic metric. II,” Siberian Math. J., 30, No. 2, 180–191 (1989).

    Article  MathSciNet  Google Scholar 

  29. Berestovskii V. N., Compact homogeneous manifolds with integrable invariant distributions, and scalar curvature,” Sb.: Math., 186, No. 7, 941–950 (1995).

    Article  MathSciNet  Google Scholar 

  30. Gorbatsevich V. V., Invariant intrinsic Finsler metrics on homogeneous spaces and strong subalgebras of Lie algebras,” Siberian Math. J., 49, No. 1, 36–47 (2008).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V.N. Berestovskii.

Additional information

Original Russian Text Copyright © 2010 Berestovskii V. N.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berestovskii, V. Solution of a Busemann problem. Sib Math J 51, 962–970 (2010). https://doi.org/10.1007/s11202-010-0095-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11202-010-0095-3

Keywords

Navigation