Skip to main content
Log in

On finite groups isospectral to simple symplectic and orthogonal groups

Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

The spectrum of a finite group is the set of its element orders. Two groups are said to be isospectral if their spectra coincide. We deal with the class of finite groups isospectral to simple and orthogonal groups over a field of an arbitrary positive characteristic p. It is known that a group of this class has a unique nonabelian composition factor. We prove that this factor cannot be isomorphic to an alternating or sporadic group. We also consider the case where this factor is isomorphic to a group of Lie type over a field of the same characteristic p.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Mazurov V. D., “Groups with prescribed spectrum,” Izv. Ural. Gos. Univ. Mat. Mekh., 7, No. 36, 119–138 (2005).

    MathSciNet  Google Scholar 

  2. Mazurov V. D., “Recognition of finite simple groups S4(q) by their element orders,” Algebra and Logic, 41, No. 2, 93–110 (2002).

    Article  MathSciNet  Google Scholar 

  3. Mazurov V. D., Xu M. C., and Cao H. P., “Recognition of finite simple groups L 3(2m) and U 3(2m) by their element orders,” Algebra and Logic, 39, No. 5, 324–334 (2000).

    Article  MathSciNet  Google Scholar 

  4. Mazurov V. D., “Characterization of finite groups by sets of element orders,” Algebra and Logic, 36, No. 1, 23–32 (1997).

    Article  MathSciNet  Google Scholar 

  5. Shi W. and Tang C. Y., “A characterization of some orthogonal groups,” Progr. Nat. Sci., 7, No. 2, 155–162 (1997).

    MATH  MathSciNet  Google Scholar 

  6. Mazurov V. D. and Moghaddamfar A. R., “The recognition of the simple group S 8(2) by its spectrum,” Algebra Colloq., 13, No. 4, 643–646 (2006).

    MATH  MathSciNet  Google Scholar 

  7. Vasil’ev A. V. and Grechkoseeva M. A., “On recognition of the finite simple orthogonal groups of dimension 2m, 2m+1, and 2m + 2 over a field of characteristic 2,” Siberian Math. J., 45, No. 3, 420–432 (2004).

    Article  MathSciNet  Google Scholar 

  8. Grechkoseeva M. A., “Recognition of the group O +10 (2) from its spectrum,” Siberian Math. J., 44, No. 4, 577–580 (2003).

    Article  MathSciNet  Google Scholar 

  9. Alekseeva O. A. and Kondrat’ev A. S., “Recognition of the groups 2 D p(3) for an odd prime p by spectrum,” Trudy Inst. Mat. Mekh. Ural Otdel. Ross. Akad. Nauk, 14, No. 4, 3–11 (2008).

    Google Scholar 

  10. Kondrat’ev A. S., “Recognition by spectrum of the groups \( ^2 D_{2^m + 1} (3) \),” Sci. China Ser. A, 52, No. 2, 293–300 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  11. Vasil’ev A. V., Gorshkov I. B., Grechkoseeva M. A., Kondrat’ev A. S., and Staroletov A. M., “On recognition of finite simple groups of types B n, C n and 2 D n for n = 2k by spectrum,” Trudy Inst. Mat. Mekh. Ural Otdel. Ross. Akad. Nauk, 15, No. 2, 58–73 (2009).

    Google Scholar 

  12. Alekseeva O. A. and Kondrat’ev A. S., “On recognizability of some finite simple orthogonal groups by spectrum,” Proc. Steklov Inst. Math., 263,Suppl. 2, S10–S23 (2009).

    Article  Google Scholar 

  13. Unsolved Problems in Group Theory. The Kourovka Notebook. 16th ed. (Eds. Mazurov V. D. and Khukhro E. I.), Sobolev Institute of Mathematics, Novosibirsk (2006).

    Google Scholar 

  14. Shi W., “A new characterization of the sporadic simple groups,“ in: Group Theory, Proc. Conf., Singapore 1987, Walter de Gruyter, Berlin and New York, 1989, pp. 531–540.

    Google Scholar 

  15. Shi W. J. and Xu M., “Pure quantitative characterization of finite simple groups 2 D n(q) and D l(q) (l odd),” Algebra Colloq., 10, No. 3, 427–443 (2003).

    MATH  MathSciNet  Google Scholar 

  16. Conway J. H, Curtis R. T., Norton S. P., Parker R. A., and Wilson R. A., Atlas of Finite Groups, Clarendon Press, Oxford (1985).

    MATH  Google Scholar 

  17. Zsigmondy K., “Zür Theorie der Potenzreste,” Monatsh. Math. Phys., Bd 3, 265–284 (1892).

    Article  MathSciNet  Google Scholar 

  18. Roitman M., “On Zsigmondy primes,” Proc. Amer. Math. Soc., 125, No. 7, 1913–1919 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  19. Williams J. S., “Prime graph components of finite groups,” J. Algebra, 69, No. 2, 487–513 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  20. Kondratiev A. S., “On prime graph components for finite simple groups,” Math. USSR-Sb., 67, No. 1, 235–247 (1990).

    Article  MathSciNet  Google Scholar 

  21. Kondrat’ev A. S. and Mazurov V. D., “Recognition of alternating groups of prime degree from their element orders,” Siberian Math. J., 41, No. 2, 294–302 (2000).

    Article  MathSciNet  Google Scholar 

  22. Vasiliev A. V. and Vdovin E. P., “An adjacency criterion for the prime graph of a finite simple group,” Algebra and Logic, 44, No. 6, 381–406 (2005).

    Article  MathSciNet  Google Scholar 

  23. Vasil’ev A. V. and Vdovin E. P., Cocliques of Maximal Size in the Prime Graph of a Finite Simple Group [Preprint, No. 225], Sobolev Institute of Mathematics, Novosibirsk (2009) (also see http://arxiv.org/abs/0905.1164v1).

    Google Scholar 

  24. Vasil’ev A. V., “On connection between the structure of a finite group and properties of its prime graph,” Siberian Math. J., 46, No. 3, 396–404 (2005).

    Article  MathSciNet  Google Scholar 

  25. Vasil’ev A. V. and Gorshkov I. B., “On recognition of finite simple groups with connected prime graph,” Siberian Math. J., 50, No. 2, 233–238 (2009).

    Article  MathSciNet  Google Scholar 

  26. Gorenstein D., Finite Groups, Harper and Row, New York etc. (1968).

    MATH  Google Scholar 

  27. Aleeva M. R., “On finite simple groups with the set of element orders as in a Frobenius group or a double Frobenius group,” Math. Notes, 73, No. 3, 299–313 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  28. Zavarnitsine A. V., “Finite simple groups with narrow prime spectrum,” Sibirsk. Elektron. Mat. Izv., 6, 1–12 (2009); http://semr.math.nsc.ru/v6/p1-12.pdf.

    Google Scholar 

  29. Vasil’ev A. V. and Grechkoseeva M. A., “Recognition by spectrum for finite simple linear groups of small dimensions over fields of characteristic 2,” Algebra and Logic, 47, No. 5, 314–320 (2008).

    Article  MathSciNet  Google Scholar 

  30. Testerman D. M., “A 1-type overgroups of elements of order p in semisimple algebraic groups and the associated finite groups,” J. Algebra, 177, No. 1, 34–76 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  31. Srinivasan B., “The characters of the finite symplectic group Sp(4, q),” Trans. Amer. Math. Soc., 131, No. 2, 488–525 (1968).

    Article  MATH  MathSciNet  Google Scholar 

  32. Carter R. W., Simple Groups of Lie Type, John Wiley and Sons, London etc. (1972) (Pure Appl. Math., a Wiley Interscience Publ.; 28).

    MATH  Google Scholar 

  33. Buturlakin A. A. and Grechkoseeva M. A., “The cyclic structure of the maximal tori of classical finite groups,” Algebra and Logic, 46, No. 2, 73–89 (2007).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Vasil’ev.

Additional information

Original Russian Text Copyright © 2009 Vasil’ev A. V., Grechkoseeva M. A., and Mazurov V. D.

The authors were supported by the Russian Foundation for Basic Research (Grant 08-01-00322), the President of the Russian Federation (Grants NSh-344.2008.1 and MK-377.2008.1), and the Program “Development of the Scientific Potential of Higher School” of the Russian Federal Agency for Education (Grant 2.1.1.419).

__________

Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 50, No. 6, pp. 1225–1247, November–December,2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasil’ev, A.V., Grechkoseeva, M.A. & Mazurov, V.D. On finite groups isospectral to simple symplectic and orthogonal groups. Sib Math J 50, 965–981 (2009). https://doi.org/10.1007/s11202-009-0107-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11202-009-0107-3

Keywords

Navigation