Skip to main content
Log in

Local audibility of a hyperbolic metric

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

A Riemannian metric g on a compact boundaryless manifold is said to be locally audible if the following statement is true for every metric g′ sufficiently close to g: if g and g′ are isospectral then they are isometric. The local audibility is proved of a metric of constant negative sectional curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kac M., “Can one hear the shape of a drum?,” Amer. Math. Monthly, 73, 1–23 (1966).

    Article  Google Scholar 

  2. Osgood B., Philips R., and Sarnak P., “Extremals of determinant of Laplacians,” J. Funct. Anal., 80, No. 1, 148–211 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  3. Milnor J., “Eigenvalues of the Laplace operator on certain manifolds,” Proc. Natl. Acad. Sci. USA, 51, 542 (1964).

    Article  MATH  MathSciNet  Google Scholar 

  4. Vigneras M. F., “Variétés Riemanniennes isospectrales et non isométrique,” Ann. Math., 112, No. 1, 21–32 (1980).

    Article  MathSciNet  Google Scholar 

  5. Sunada T., “Riemannian coverings and isospectral manifolds,” Ann. Math., 121, No. 1, 168–186 (1985).

    Article  MathSciNet  Google Scholar 

  6. Gordon C. and Wilson E., “Isospectral deformations of compact solvmanifolds,” J. Differential Geom., 19, No. 1, 241–256 (1984).

    MATH  MathSciNet  Google Scholar 

  7. Croke C. B. and Sharafutdinov V. A., “Spectral rigidity of a negatively curved manifold,” Topology, 37, No. 6, 1265–1273 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  8. McKean H. P., “Selberg’s trace formula as applied to a compact Riemann surface,” Comm. Pure Appl. Math., 25, No. 3, 225–246 (1972); Correction: ibid, 27, No. 134 (1974).

    Article  MathSciNet  Google Scholar 

  9. Thurston W. P., The Geometry and Topology of 3-Manifolds, Princeton Univ., Princeton (1978) (Lecture Notes from Princeton Univ. 1977/1978).

    Google Scholar 

  10. Wang H. C., “Topics in totally discontinuous groups,” in: Symmetric Spaces, Boothby-Weiss, New York, 1972, pp. 460–485.

    Google Scholar 

  11. Osgood B., Philips R., and Sarnak P., “Compact isospectral sets of surfaces,” J. Funct. Anal., 80, No. 1, 212–234 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  12. Brooks R., Perry P., and Petersen P., “Compactness and finiteness theorems for isospectral manifolds,” J. Reine Angew. Math., 426, 67–89 (1992).

    MATH  MathSciNet  Google Scholar 

  13. Croke C. B., Dairbekov N. S., and Sharafutdinov V. A., “Local boundary rigidity of a compact Riemannian manifold with curvature bounded above,” Trans. Amer. Math. Soc., 352, No. 9, 3937–3956 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  14. Gilkey P. B., Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem, Publish or Perish, Inc., Wilmington, Delaware (USA) (1984).

    MATH  Google Scholar 

  15. Berger M., “Eigenvalues of the Laplacian,” in: Global Analysis, Proc. Sympos. Pure Math., 16, pp. 121–125 (1970).

    Google Scholar 

  16. Patodi V. K., “Curvature and the fundamental solution of the heat operator,” J. Indian Math. Soc., 34, 269–285 (1970).

    MathSciNet  Google Scholar 

  17. Guillemin V. and Kazhdan D., “Some inverse spectral results for negatively curved 2-manifolds,” Topology, 19, No. 3, 301–302 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  18. Sharafutdinov V. and Uhlmann G., “On deformation boundary rigidity and spectral rigidity of Riemannian surfaces with no focal points,” J. Differential Geom., 56, No. 1, 93–110 (2000).

    MATH  MathSciNet  Google Scholar 

  19. Dairbekov N. and Sharafutdinov V., “Some problems of integral geometry on Anosov manifolds,” Ergodic Theory Dynam. Systems, 23, 59–74 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  20. Llave R. de la, Marco J. M., and Moriyon R., “Canonical perturbation theory of Anosov systems and regularity results for the Livshic cohomology equation,” Ann. Math. (2), 123, No. 3, 537–611 (1986).

    Article  Google Scholar 

  21. Livshic A. N., “Some properties of homologies of U-systems,” Mat. Zametki, 10, No. 5, 555–564 (1971).

    MathSciNet  Google Scholar 

  22. Llave R. de la, “Remarks on Sobolev regularity of Anosov systems,” Ergodic Theory Dynam. Systems, 21, 1139–1180 (2001).

    MATH  MathSciNet  Google Scholar 

  23. Gilkey P. B., “Functorality and heat equation asymptotics,” Colloq. Math. Soc. János Bolyai. Differ. Geom. Eger (Hungary), 56, 285–315 (1989).

    MathSciNet  Google Scholar 

  24. Weyl H., The Classical Groups: Their Invariants and Representations, Princeton Univ. Press, Princeton (1946).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir A. Sharafutdinov.

Additional information

To Yuriĭ Grigor’evich Reshetnyak on his 80th birthday.

Original Russian Text Copyright © 2009 Sharafutdinov V. A.

The author was supported by the Russian Foundation for Basic Research (Grant 08-01-92001-NNS) and the Integration Project of the Siberian Division of the Russian Academy of Sciences (Grant No. 94).

__________

Novosibirsk. Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 50, No. 5, pp. 1176–1194, September–October, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharafutdinov, V.A. Local audibility of a hyperbolic metric. Sib Math J 50, 929–944 (2009). https://doi.org/10.1007/s11202-009-0103-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11202-009-0103-7

Keywords

Navigation