Siberian Mathematical Journal

, Volume 49, Issue 5, pp 771–779

Sobolev of the Euler school

Article
  • 37 Downloads

Abstract

This is a short overview of the origins of distribution theory as well as a few signposts of the life of Sergeĭ Sobolev (1908–1989) and his contribution to the formation of the modern outlook of mathematics.

Keywords

distribution weak derivative A-bomb 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brylevskaya L. I., “The myth of Ostrogradskiĭ: truth and prevarication,” in: Istoriko-Matematicheskie Issledovaniya. Second Series. Issue 7 (42) [in Russian], Yanus-K, Moscow, 2002, pp. 18–38.Google Scholar
  2. 2.
    Varadarajan V. S., Euler Through Time: A New Look at Old Themes, Amer. Math. Soc., Providence, R.I. (2006).MATHGoogle Scholar
  3. 3.
    Reid C., Hilbert. With an Appreciation of Hilbert’s Mathematical Work by Hermann Weyl, Springer-Verlag, Berlin etc. (1970).Google Scholar
  4. 4.
    Gnedenko B. V., Mikhail Vasil’evich Ostrogradskiĭ [in Russian], State Technico-Theoretical Literature Press, Moscow (1952).Google Scholar
  5. 5.
    Prudnikov V. E., Pafnutiĭ L’vovich Chebyshev [in Russian], Nauka Publishers, Leningrad (1976).Google Scholar
  6. 6.
    Smirnov V. I. (ed.), Mathematics in Petersburg-Leningrad University [in Russian], Leningrad University Press, Leningrad (1970).Google Scholar
  7. 7.
    Ramazanov M. D. (ed.), Sergeĭ L’vovich Sobolev. Pages of His Life in the Remembrances of Contemporaries [in Russian], Institute of Mathematics and Computer Center of the Ural Division of the RAS, Ufa (2003).Google Scholar
  8. 8.
    Ladyzhenskaya O. A. and Babich V. M. (eds.), Vladimir Ivanovich Smirnov (1887–1974). Second Edition [in Russian], Nauka Publishers, Moscow (2006).MATHGoogle Scholar
  9. 9.
    Sobolev S. L., Selected Works. Vol. 2 [in Russian], Sobolev Institute of Mathematics, Novosibirsk (2006).Google Scholar
  10. 10.
    Smirnov V. I. and Sobolev S. L., “A biographical essay [Nikolaĭ Maksimovich Günter (1871–1941)],” in: Günter N. M., Potential Theory and Its Application to Basic Problems of Mathematical Physics [in Russian], State Technico-Theoretical Literature Press, Moscow, 1953, pp. 393–405.Google Scholar
  11. 11.
    Neumann Johann v., Mathematische Grundlagen der Quantenmechanik [in German], Berlin, Springer-Verlag (1932).Google Scholar
  12. 12.
    Kantorovich L. V., “On certain general methods of the extension of Hilbert space,” in: Selected Works. Part I, Gordon and Breach Publishers, Amsterdam, 1996, pp. 203–206.Google Scholar
  13. 13.
    Kantorovich L. V., “On certain particular methods of the extension of Hilbert space,” in: Selected Works. Part I, Gordon and Breach Publishers, Amsterdam, 1996, pp. 207–213.Google Scholar
  14. 14.
    Kantorovich V. L., Kutateladze S. S., and Fet Ya. I. (comps.), Leonid Vital’evich Kantorovich as a Scholar and Personality. Vol. 1 and 2 [in Russian], Publishing House of the Siberian Division of the Russian Academy of Science, “Geo” Affiliation, Novosibirsk (2002, 2004).Google Scholar
  15. 15.
    Leifert L. A., Segal B. I., and Fedorov L. I. (eds.), In the Leningrad Mathematical Front [in Russian], State Social-Economical Literature Press, Moscow; Leningrad (1931).Google Scholar
  16. 16.
    Kutateladze S. S., “Roots of Luzin’s case,” J. Appl. Industr. Math., 1, No. 3, 261–267 (2007).CrossRefGoogle Scholar
  17. 17.
    Demidov S. S. and Levshin B. V. (eds.), The Case of Academician Nikolaĭ Nikolaevich Luzin [in Russian], Russian Christian Humanitarian Institute, St. Petersburg (1999).Google Scholar
  18. 18.
    Ryabev L. D. (ed.), The Atomic Project of the USSR. Documents and Papers. Vol. 2: Atomic Bomb 1945–1954. Book 2 [in Russian], Nauka Publishers, Moscow; Sarov (2000).Google Scholar
  19. 19.
    Ryabev L. D. (ed.), The Atomic Project of the USSR. Documents and Papers. Vol. 2: Atomic Bomb 1945–1954. Book 4 [in Russian], Nauka Publishers, Moscow; Sarov (2000).Google Scholar
  20. 20.
    Fedoseev P. N. et al. (eds.), Philosophical Problems of the Modern Natural Sciences [in Russian], Publishing House of the Academy of Sciences of the USSR, Moscow (1959).Google Scholar
  21. 21.
    Dubinina L. G. and Ovchinnikova I. N. (comps.), Nikolaĭ Petrovich Dubinin and the Twentieth Century [in Russian], Nauka Publishers, Moscow (2006).Google Scholar
  22. 22.
    Euler L., Differential Calculus [in Russian], State Technical Press, Leningrad (1949).Google Scholar
  23. 23.
    Ruthing D., “Some definitions of the concept of function from Joh. Bernoulli to N. Bourbaki,” Math. Intelligencer, 6, No. 4, 72–77 (1984).MathSciNetGoogle Scholar
  24. 24.
    Eves H., An Introduction to the History of Mathematics, Saunders Collins Publishing, Philadelphia etc. (1983).MATHGoogle Scholar
  25. 25.
    Joseph G. G., The Crest of the Peacock: The Non-European Roots of Mathematics, Princeton University Press, Princeton (2000).MATHGoogle Scholar
  26. 26.
    Lützen J., The Prehistory of the Theory of Distributions, Springer-Verlag, New York etc. (1982).MATHGoogle Scholar
  27. 27.
    Demidov S. S., “The concept of solution of a differential equation in the vibrating string dispute of the eighteenth century,” in: Istoriko-Matematicheskie Issledovaniya. Issue 21 [in Russian], Nauka Publishers, Moscow, 1976, pp. 158–182.Google Scholar
  28. 28.
    Schwartz L., A Mathematician Grappling with His Century, Birkhaüser, Basel etc. (2001).MATHGoogle Scholar
  29. 29.
    Kutateladze S. S., “Sergeĭ Sobolev and Laurent Schwartz,” Herald of the Russian Academy of Sciences, 75, No. 2, 183–188 (2005).Google Scholar
  30. 30.
    Sobolev S. L., Introduction to the Theory of Cubature Formulas [in Russian], Nauka Publishers, Moscow (1974).Google Scholar
  31. 31.
    Pasternak B. L., Poems [in Russian and English], Raduga Publishers, Moscow (1990).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia

Personalised recommendations