Skip to main content
Log in

Quasiconvex functions and null Lagrangians in the stability problems of classes of mappings

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We obtain stability theorems for classes of solutions to the differential equations constructed by means of quasiconvex functions and null Lagrangians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lavrent’ev M. A., “Sur une classe de représentations continués,” Mat. Sb., 42, No. 4, 407–424 (1935).

    MathSciNet  Google Scholar 

  2. Lavrent’ev M. A., “Stability in Liouville’s theorem,” Dokl. Akad. Nauk USSR, 95, No. 5, 925–926 (1954).

    MATH  MathSciNet  Google Scholar 

  3. Belinskii P. P., General Properties of Quasiconformal Mappings [in Russian], Nauka, Novosibirsk (1974).

    Google Scholar 

  4. Reshetnyak Yu. G., Space Mappings with Bounded Distortion [in Russian], Nauka, Novosibirsk (1982).

    Google Scholar 

  5. Reshetnyak Yu. G., Space Mappings with Bounded Distortion, Amer. Math. Soc., Providence, RI (1989) (Transl. Math. Monographs; 73).

    MATH  Google Scholar 

  6. Reshetnyak Yu. G., Stability Theorems in Geometry and Analysis, Kluwer Acad. Publ., Dordrecht (1994) (Mathematics and Its Applications; 304).

    MATH  Google Scholar 

  7. Kopylov A. P., Stability in the C-Norm of Classes of Mappings [in Russian], Nauka, Novosibirsk (1990).

    Google Scholar 

  8. Iwaniec T. and Martin G., Geometrical Function Theory and Non-Linear Analysis, Oxford Univ. Press, Oxford (2001) (Oxford Math. Monographs).

    Google Scholar 

  9. Kopylov A. P., “On stability of classes of holomorphic maps in several variables. I. The concept of stability. Liouville’s theorem,” Siberian Math. J., 23, No. 2, 203–224 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  10. Kopylov A. P., “On stability of classes of conformal mappings. I,” Siberian Math. J., 36, No. 2, 305–323 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  11. Dairbekov N. S., “Quasiregular mappings of several n-dimensional variables,” Siberian Math. J., 34, No. 4, 669–682 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  12. Dairbekov N. S., “Stability of classes of quasiregular mappings in several spatial variables,” Siberian Math. J., 36, No. 1, 43–54 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  13. Sokolova T. V., “Behavior of nearly homothetic mappings,” Math. Notes, 50, No. 4, 1089–1090 (1991).

    MathSciNet  Google Scholar 

  14. Sokolova T. V., Stability in the Space W 1p of Homothety Transformations [in Russian], Dis. Kand. Fiz.-Mat. Nauk, Novosibirsk (1991).

  15. Egorov A. A., “Stability of classes of solutions to partial differential relations constructed by convex and quasiaffine functions,” in: Proceedings on Geometry and Analysis [in Russian], Izdat. Inst. Mat., Novosibirsk, 2003, pp. 275–288.

    Google Scholar 

  16. Egorov A. A., “Stability of classes of solutions to partial differential relations constructed by quasiconvex functions and null Lagrangians,” in: EQUADIFF 2003, World Sci. Publ., Hackensack, NJ, 2005, pp. 1065–1067.

    Chapter  Google Scholar 

  17. Ball J. M., “Convexity conditions and existence theorems in nonlinear elasticity,” Arch. Rational Mech. Anal., 63, 337–403 (1976).

    Article  MathSciNet  Google Scholar 

  18. Ball J. M. and Marsden J. E., “Quasiconvexity at the boundary, positivity of the second variation and elastic stability,” Arch. Rational Mech. Anal., 86, 251–277 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  19. Morrey C. B., Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berlin; Heidelberg; New York (1966) (Grundlag. Math. Wiss.; 130).

    MATH  Google Scholar 

  20. Ball J. M., Currie J. C., and Olver P. J., “Null Lagrangians, weak continuity, and variational problems of arbitrary order,” J. Funct. Anal, 41, 135–174 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  21. Dacorogna B., Weak Continuity and Weak Lower Semi-Continuity of Non-Linear Functionals, Springer-Verlag, Berlin etc. (1982) (Lecture Notes in Math.; 922).

    MATH  Google Scholar 

  22. Dacorogna B., Direct Methods in the Calculus of Variations, Springer-Verlag, Berlin; Heidelberg; New York (1989) (Appl. Math. Sci.; 78).

    MATH  Google Scholar 

  23. Müller S., “Variational models for microstructure and phase transitions,” in: Calculus of Variations and Geometric Evolution Problems, Springer-Verlag, Berlin, 1999, pp. 85–210 (Lecture Notes in Math.; 1713).

    Chapter  Google Scholar 

  24. Sychev M., “Young measure approach to characterization of behaviour of integral functionals on weakly convergent sequences by means of their integrands,” Ann. Inst. H. Poincaré Anal. Non Linéaire, 15, 755–782 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  25. Knops R. J. and Stuart C. A., “Quasiconvexity and uniqueness of equilibrium solutions in nonlinear elasticity,” Arch. Rational Mech. Anal, 86, No. 3, 233–249 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  26. Kristensen J., Finite Functionals and Young Measures Generated by Gradients of Sobolev Functions [Preprint, MAT-REPORT No. 1994-34], Mathematical Institute; Technical University of Denmark, Lyngby, Denmark (1994).

    Google Scholar 

  27. Evans L. C., “Quasiconvexity and partial regularity in the calculus of variations,” Arch. Rational Mech. Anal, 95, 227–252 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  28. Evans L. C. and Gariepy R. F., “Some remarks concerning quasiconvexity and strong convergence,” Proc. Roy. Soc. Edinburgh, Sect. A, 106, 53–61 (1987).

    MATH  MathSciNet  Google Scholar 

  29. Ball J. M., “Constitutive inequalities and existence theorems in nonlinear elastostatics,” in: Nonlinear Analysis and Mechanics: Heriot-Watt Symposium (Edinburgh, 1976), Pitman, London, 1977, 1, pp. 187–241.

    Google Scholar 

  30. Landers A. W., “Invariant multiple integrals in the calculus of variations,” in: Contributions to the Calculus of Variations, 1938–1941, Univ. of Chicago Press, Chicago, 1942, pp. 184–189.

    Google Scholar 

  31. Edelen D. G. B., Non Local Variations and Local Invariance of Fields, Elsivier, New York (1969) (Modern Analytic and Computational Methods in Science and Engineering; 19).

    Google Scholar 

  32. Acerbi E. and Fusco N., “Semicontinuity problems in the calculus of variations,” Arch. Rational Mech. Anal., 86, 125–145 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  33. Reshetnyak Yu.G., “An integral inequality for differentiable functions of several variables,” Siberian Math. J., 25, No. 5, 790–794 (1984).

    Article  MATH  Google Scholar 

  34. Vasilenko G. V., “Convergence with a functional,” Siberian Math. J., 27, No. 1, 19–26 (1986).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Egorov.

Additional information

Original Russian Text Copyright © 2008 Egorov A. A.

The author was supported by the Russian Foundation for Basic Research, the State Maintenance Program for the Young Science Doctors and the Leading Scientific Schools of the Russian Federation, the Interdisciplinary Project of the Siberian Division of the Russian Academy of Sciences (Grant No. 117, 2006), and the Russian Science Support Foundation.

__________

Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 49, No. 4, pp. 796–812, July–August, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egorov, A.A. Quasiconvex functions and null Lagrangians in the stability problems of classes of mappings. Sib Math J 49, 637–649 (2008). https://doi.org/10.1007/s11202-008-0060-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11202-008-0060-6

Keywords

Navigation