Skip to main content
Log in

The isometry groups of Riemannian orbifolds

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We prove that the isometry group ℑ(\(\mathcal{N}\)) of an arbitrary Riemannian orbifold \(\mathcal{N}\), endowed with the compact-open topology, is a Lie group acting smoothly and properly on \(\mathcal{N}\). Moreover, ℑ(\(\mathcal{N}\)) admits a unique smooth structure that makes it into a Lie group. We show in particular that the isometry group of each compact Riemannian orbifold with a negative definite Ricci tensor is finite, thus generalizing the well-known Bochner’s theorem for Riemannian manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Satake I., “On a generalization of the notion of manifold,” Proc. Nat. Acad. Sci., 42, No. 6, 359–363 (1956).

    Article  MATH  MathSciNet  Google Scholar 

  2. Chen W. and Ruan Y., “A new cohomology theory of orbifold,” Comm. Math. Phys., 248, No. 1, 1–31 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  3. Zhukova N. I., “Foliations with locally stable leaves,” Russian Math., 40, No. 7, 19–29 (1996).

    MATH  MathSciNet  Google Scholar 

  4. Dixon L., Harwey J. A., Vafa C., and Witten E., “Strings on orbifolds (1),” Nuclear Phys. B, 261, No. 4, 678–686 (1985).

    Article  MathSciNet  Google Scholar 

  5. Pflaum M. J., “On deformation quantization of symplectic orbispaces,” Differential Geom. Appl., 19, No. 3, 343–368 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  6. Satake I., “The Gauss-Bonnet theorem for V-manifolds,” J. Math. Soc. Japan, 9, No. 4, 464–492 (1957).

    Article  MATH  MathSciNet  Google Scholar 

  7. Thurston W. P., “The Geometry and Topology of 3-Manifolds”, Princeton Univ., Princeton (1978) (Mimeographed Notes).

    Google Scholar 

  8. Borzellino J. E., “Orbifolds of maximal diameter,” Indiana Univ. Math. J., 42, No. 1, 37–53 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  9. Borzellino J. E., “Orbifolds with Ricci curvature bounds,” Proc. Amer. Math. Soc., 125, No. 10, 3001–3018 (1997).

    Article  MathSciNet  Google Scholar 

  10. Borzellino J. E. and Zhu S., “The splitting theorem for orbifolds,” Illinois J. Math., 38, No. 4, 679–691 (1994).

    MATH  MathSciNet  Google Scholar 

  11. Myers S. B. and Steenrod N., “The group of isometries of a Riemannian manifold,” Ann. Math., 40, No. 2, 400–416 (1939).

    Article  MathSciNet  Google Scholar 

  12. Bochner S., “Vector fields and Ricci curvature,” Bull. Amer. Math. Soc., 52, 776–797 (1946).

    Article  MATH  MathSciNet  Google Scholar 

  13. Bagaev A. V. and Zhukova N. I., “The automorphism groups of finite type G-structures on orbifolds,” Siberian Math. J., 44, No. 2, 213–225 (2003).

    Article  MathSciNet  Google Scholar 

  14. Baily W. L. Jr., “The decomposition theorem for V-manifolds,” Amer. J. Math., 78, No. 4, 862–888 (1956).

    Article  MATH  MathSciNet  Google Scholar 

  15. Moerdijk I. and Pronk D., “Orbifolds, sheaves and groupoids,” K-theory, 12, No. 1, 3–21 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  16. Bagaev A. V. and Zhukova N. I., “Affinely connected orbifolds and their automorphisms,” in: Non-Euclidean Geometry in Modern Physics and Mathematics: Proc. of the Intern. Conf. BGL-4 (Bolyai-Gauss-Lobachevsky) (Nizhny Novgorod, Sept. 7–11, 2004), ITF NAB Ukraine, Kiev, 2004, pp. 31–48.

    Google Scholar 

  17. Kobayashi Sh. and Nomizu K., Foundations of Differential Geometry. Vol. 1 [Russian translation], Nauka, Moscow (1981).

    Google Scholar 

  18. Alekseevskii D. V., “An invariant metric,” in: Mathematical Encyclopedia. Vol. 2, Sovetskaya Éntsiklopediya, Moscow, 1985, pp. 529–531.

    Google Scholar 

  19. Bredon G. E., Introduction to Compact Transformation Groups, Academic Press, New York; London (1972).

    MATH  Google Scholar 

  20. Arens R., “A topology for spaces of transformations,” Ann. of Math., 47, No. 3, 480–495 (1946).

    Article  MathSciNet  Google Scholar 

  21. Vinberg É. B. and Onishchik A. L., Seminar on Lie Groups and Algebraic Groups [in Russian], URSS, Moscow (1995).

    MATH  Google Scholar 

  22. Montgomery D. and Zippin L., Transformation Groups, Interscience, New York (1955).

    MATH  Google Scholar 

  23. Scott P., The Geometries of 3-Manifolds [Russian translation], Mir, Moscow (1986).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors were supported by the Russian Foundation for Basic Research (Grant 06-01-00331-a).

__________

Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 48, No. 4, pp. 723–741, July–August, 2007.

Original Russian Text Copyright © 2007 Bagaev A. V. and Zhukova N. I.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagaev, A.V., Zhukova, N.I. The isometry groups of Riemannian orbifolds. Sib Math J 48, 579–592 (2007). https://doi.org/10.1007/s11202-007-0060-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11202-007-0060-y

Keywords

Navigation