Skip to main content
Log in

On Localization of Solutions of Elliptic Equations with Nonhomogeneous Anisotropic Degeneracy

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

The work deals with the Dirichlet problem for elliptic equations with nonhomogeneous anisotropic degeneracy in a possibly unbounded domain of multidimensional Euclidean space. The existence of weak solutions is proved. Some conditions are established connecting the character of nonlinearity of the equation and the geometric characteristics of the domain which guarantee the one-dimensional localization (vanishing) of weak solutions. The equation with anisotropic degeneracy is shown to admit localized solutions even in the absence of absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antontsev S. N., Kazhikhov A. V., and Monakhov V. N., Boundary Value Problems in Mechanics of Nonhomogeneous Fluids [in Russian], Nauka, Novosibirsk (1983).

    Google Scholar 

  2. de Marsily G., Quantitative Hydrogeology. Groundwater Hydrology for Engineers, Academic Press, London (1986).

    Google Scholar 

  3. Ruzicka M., Electrorheological Fluids: Modeling and Mathematical Theory, Springer-Verlag, Berlin (2000) (Lecture Notes in Math.; 1748).

    Google Scholar 

  4. Antontsev S. N., “Quasilinear parabolic equations with non-isotropic nonlinearities: space and time localization,” in: Energy Methods in Continuum Mechanics (Oviedo, 1994), Kluwer Acad. Publ., Dordrecht, 1996, pp. 1–12.

    Google Scholar 

  5. Antontsev S. N., Diaz J. I., and Shmarev S. I., Energy Methods for Free Boundary Problems: Applications to Non-Linear PDEs and Fluid Mechanics, Bikhauser, Boston (2002). (Progress in Nonlinear Differential Equations and Their Applications; 48.)

    Google Scholar 

  6. Ivanov A. V., “Second-order quasilinear degenerate and nonuniformly elliptic and parabolic equations, ” Trudy Mat. Inst. Steklov., 160, 285 (1982).

    Google Scholar 

  7. Ivanov A. V., “Existence and uniqueness of a regular solution of the Cauchy-Dirichlet problem for doubly nonlinear parabolic equations,” Z. Anal. Anwendungen, 14, 751–777 (1995).

    Google Scholar 

  8. Kalashnikov A. S., “Some problems of the qualitative theory of second-order nonlinear degenerate parabolic equations,” Uspekhi Mat. Nauk, 42, No.2, 135–176 (1987).

    Google Scholar 

  9. Lions J.-L., Quelques methodes de resolution des problemes aux limites non lineaires, Dunod, Paris (1969).

    Google Scholar 

  10. Tsutsumi M., “On solutions of some doubly nonlinear degenerate parabolic equations with absorption, ” J. Math. Anal. Appl., 132, 187–212 (1988).

    Article  Google Scholar 

  11. Antontsev S. N. and Shmarev S. I., “A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions,” in: Nonlinear Analysis: Theory and Methods, 2005, 60, pp. 515–545.

    Article  MathSciNet  Google Scholar 

  12. Antontsev S. N. and Shmarev S. I., “Existence and uniqueness of solutions of degenerate parabolic equations with variable exponents of nonlinearity,” Trudy Sem. Petrovsk. (2005) (to appear).

  13. Kalashnikov A. S., “Nonlinear effects in heat propagation in media with sources and sinks that are close to linear,” Differentsial nye Uravneniya, 31, No.2, 277–288 (1995).

    Google Scholar 

  14. Kalashnikov A. S., “On some problems in the nonlinear theory of heat conduction with data containing a small parameter in the exponents,” Zh. Vychisl. Mat. i Mat. Fiz., 35, No.7, 1077–1094 (1995).

    Google Scholar 

  15. Kalashnikov A. S., “On some nonlinear problems in mathematical physics with exponents that are close to critical,” Tr. Sem. Petrovsk., 19, 73–98 (1996).

    Google Scholar 

  16. Vazquez J. L., “A strong maximum principle for some quasilinear elliptic equations,” Appl. Math. Optim., 12, 191–202 (1984).

    Article  Google Scholar 

  17. Pucci P. and Serrin J., “The strong maximum principle revisited,” J. Differential Equations, 196, 1–66 (2004).

    Article  Google Scholar 

  18. Kovacik O. and Rakosnik J., “On spaces L p(x) and W k,p(x),” Czechoslovak Math. J., 41, 592–618 (1991).

    Google Scholar 

  19. Musielak J., Orlicz Spaces and Modular Spaces, Springer-Verlag, Berlin (1983) (Lecture Notes in Math.; 1034).

    Google Scholar 

  20. Fan X. and Zhao D., “Local C 1,0 regularity of weak solutions for p(x)-Laplacian equations,” J. Gansu Education College, 15, No.2, 1–5 (2001).

    Google Scholar 

  21. Samko S. G., “Differentiation and integration of variable order and the spaces L p(x),” in: Operator Theory for Complex and Hypercomplex Analysis (Mexico City, 1994), Amer. Math. Soc., Providence, RI, 1998, pp. 203–219. (Contemp. Math., Amer. Math. Soc.; V. 212).

    Google Scholar 

  22. Samko S. G., “Density C 0 (ℝn) in the generalized Sobolev spaces W m,p(x)(ℝn),” Dokl. Ross. Akad. Nauk, 369, No.4, 451–454 (1999).

    Google Scholar 

  23. Zhikov V. V., “On the density of smooth functions in Sobolev-Orlicz spaces,” Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 310, 1–14 (2004).

    Google Scholar 

  24. Ladyzhenskaya O. A. and Ural'tseva N. N., Linear and Quasilinear Elliptic Equations [in Russian], Nauka, Moscow (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to the memory of Tadei Ivanovich Zelenyak, an outstanding mathematician.

Original Russian Text Copyright © 2005 Antontsev S. N. and Shmarev S. I.

The first author was supported by the Mathematical Center of the University of Beira Interior (Portugal); the second, by the research grants MTM-2004-05417 (Spain) and HPRN-CT-2002-00274 (EC).

__________

Translated from Sibirskii Matematicheskii Zhurnal, Vol. 46, No. 5, pp. 963–984, September–October, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antontsev, S.N., Shmarev, S.I. On Localization of Solutions of Elliptic Equations with Nonhomogeneous Anisotropic Degeneracy. Sib Math J 46, 765–782 (2005). https://doi.org/10.1007/s11202-005-0076-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11202-005-0076-0

Keywords

Navigation