Skip to main content
Log in

Synthesis and characterization of new cross-linked terpolymer systems containing silyl group

  • Published:
Silicon Chemistry

Abstract

A series of acrylic terpolymers containing silyl pendant groups was prepared by free radical cross-linking copolymerization. Me3Si, Et3Si and t-BuMe2Si together with cubane-1, 4-dicarboxylic acid (CDA) were covalently linked with 2-hydroxyethyl methacrylate (HEMA). The silyl-linked HEMA are abbreviated as TMSiEMA, TESiEMA and TBSiEMA respectively. Cubane-1, 4-dicarboxylic acid (CDA) linked to two HEMA group is the cross-linking agent (CA). Free radical cross-linking terpolymerization of the methyl methacrylate (MMA) and methacrylic acid (MAA) with two different molar ratios of organosilyl monomers and CA was carried out at 60–70 C. The compositions of the cross-linked three-dimensional polymers were determined by FT-IR spectroscopy. The glass transition temperature (Tg) of the network polymers was determined calorimetrically. The Tg of network terpolymers increases with increasing of cross-linking degree. Equilibrium swelling studies were carried out in enzyme-free simulated gastric and intestinal fluids (SGF and SIF, respectively). The gels swelled more in SIF than in SGF. The swelling behaviour of the copolymers was dependent on the content of MAA groups and caused a decrease in gel swelling in pH 1 or an increase in gel swelling in pH 7.4. Based on the great difference in swelling ratio at pH 1 and 7.4 for P-1, P-6 and P-10 appear to be good candidates for colon-specific drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harris, F.W., Controlled release from polymers containing pendent bioactive substituents, in Medical Application of Controlled Release, R.S. Langer, D.L. Wise, (Eds.), CRC Press, Boca Raton, FL, 1984.

    Google Scholar 

  2. Martin, B.D., Linhardt, R.J. & Dordick, J.S., 1998 Highly swelling hydrogels from ordered galactose-based polyacrylates. Biomaterials 19, 69–76.

    Article  PubMed  CAS  Google Scholar 

  3. Cicek, H. & Tuncel, A. 1998 Immobilization of α-chymotrypsin in thermally reversible isopropyl acrylamide-hydroxyethyl methacrylate copolymer gel. J. Polym. Sci., Part A Polym. Chem 36, 543–552.

    Article  CAS  Google Scholar 

  4. Jayakumar, R., Balaji, R., & Nanjundan, S. 2000 Studies on copolymers of 2-(N-phthalimido) ethyl methacrylate with methyl methacrylate. Eur Polym J. 36(8), 1659– 1666.

    Article  CAS  Google Scholar 

  5. Madheswari, D. & Nanzundan, S. 1992 Copolymers of p-biphenyl acrylate with methyl methacrylate: synthesis, characterization and monomer reactivity ratios. Eur Polym J 28(9), 1123–1126.

    Article  CAS  Google Scholar 

  6. Joshi, H.N. 1988, Recent advances in drug delivery systems. Polymeric prodrugs, Pharm. Technol. 12, 112.

    Google Scholar 

  7. Langer, R.S. & Peppas, N. A. 1981 Present and future applications of biomaterials in controlled drug delivery system. Biomaterials 2, 201–214.

    Article  PubMed  CAS  Google Scholar 

  8. Nakadaira, Y. Ohara, K. & Sakurai, H. 1986 Chemistry of organosilicon compounds: sterically crowded silanes. J Organomet Chem 309, 247–256.

    Article  CAS  Google Scholar 

  9. Yampolskii, Y., Pavlova, A., Ushakov, N. & Finkelshtein, E. 1994 On the unusually high solubility of a trimethylsilyl derivative of poly (dimethylsilacyclobutane). Macromol Rapid Commun 15(12), 917–922.

    Article  CAS  Google Scholar 

  10. Finkelshtein, E., Makoveskii, K., Yampolskii, Y., Ostrovskaya, I., Portnykh, E. & Kalyuhnyi, N. et al. 1991 Ring opening metathesis polymerization of norbornenes with organosilicon substituents. Gas permeability of polymers obtained. Makromol Chem 192(1), 1–9.

    Article  CAS  Google Scholar 

  11. Kim, Y., Kwon, S. & Choi, S. 1997 Synthesis and properties of poly (1, 6-heptadiyne) having a bulky siloxy group. Macromolecules 30(21), 6677–6679.

    Article  CAS  Google Scholar 

  12. Safa, K., Babazadeh, M., Namazi, H., Mahkam, M. & Assadi, G. 2004 Synthesis and characterization of new polymer systems containing very bulky tris(trimethylsilyl) methyl substituents as side chains. Eur Polym J 40, 459– 466.

    Article  CAS  Google Scholar 

  13. Neilson, P.W. 1996 Gas permeation studies of silylated derivatives of poly (methylphenylphosphazene). Macromolecules 29(10), 3457–3461.

    Article  Google Scholar 

  14. Zhang, J. & Hou, X. 1994 The gas permeation property in trimethylsilyl-substituted PPO and triphenylsilyl-substituted PPO. J Membr Sci 97, 257–282.

    Google Scholar 

  15. Montheard, J.P., Jegat, C. & Camps, M. 1999 Vinylbenzylchloride (chloromethylstyrene), polymers, and copolymers: recent reactions and applications. J Macromol Sci Polym Rev 39(1), 135–174.

    Google Scholar 

  16. Kowalewska, A., Stanczyk, W.A., Boileau, S., Letel, L., & Smith, J.D. 1999 Novel polymer systems with very bulky organosilicon side chain substituents. Polymer 40, 813.

    Article  CAS  Google Scholar 

  17. Park, K.Y., Kim, H.J., Kim, W.Y., Jeong, Y.S. & Lee, Y.S. 2001 Polymer membranes containing 4-trimethylsilylmethylstyrene units. Bull. Korean. Chem. Soc. 22, 1049–1052.

    CAS  Google Scholar 

  18. Nagasaki, Y., Suda, M., & Tsuruta, T. 1989 Poly [4-bis (trimethylsilyl) methylstyrene] for an oxygen-permeable membrane. Macromol. Chem., Rapid Commun. 10, 255–258.

    Article  CAS  Google Scholar 

  19. Nagasaki, Y. & Tsuruta, T. 1986 A novel synthesis of styrene derivatives with silylmethyl groups. Macromol. Chem., Rapid Commun. 7, 437–442.

    Article  CAS  Google Scholar 

  20. Mahkam, M., sharifi, N., & Entezami, A.A. 2000 Regulation of controlled release of Ibuprofen from cross-linked polymer containing Cubane as a new cross-linking agent. J. Bioact. Comp. Polym 15, 396–405.

    Article  CAS  Google Scholar 

  21. Mahkam, M. 2004 Controlled release of biomolecules from pH-sensitive hydrogels prepared by radiation polymerization. J. Bioact. Comp. Polym. 19(3), 209–220.

    Article  CAS  Google Scholar 

  22. Mahkam, M., Assadi, M.G., zahedifar, R., Ramesh, M. & Davaran, S. 2004 Linear type azo-containing polyurethanes for colon specific drug delivery. J. Bioact. Comp. Polym. 19, 45–53.

    Article  CAS  Google Scholar 

  23. Chung, K.T., Flunk, G.E. & Egan, M. 1976 Azo dye reduction by anaerobes. Appl. Environ. Microbiol. 5, 558.

    Google Scholar 

  24. Schroeder, H. & Campbell, D.E. 1972 Absorption, metabolism and excretion of salicylazosulfopyridine in man. Clin. Pharmacol. Ther. 13, 539.

    Google Scholar 

  25. Chourasia, M.K. & Jain, S.K. 2003 Pharmaceutical approaches to colon targeted drugs delivery systems. J. Pharm. Pharma. Sci. 6(1): 33–66.

    CAS  Google Scholar 

  26. Moreau, J.C., et al. 1991 Journal of Materials Science: Materials in Medicine 2, 243–247.

    Article  CAS  ADS  Google Scholar 

  27. Hsieh, D.S.T., Chiang, C.C., & Desai, D.S. 1985 Pharmaceutical Technology 39–49.

  28. Kajihara, M., et al. 2003 Chemical and Pharmaceutical Bulletin 51, 11–14.

    Article  CAS  Google Scholar 

  29. Pfister, W.R., Sweet, R.P., Weaver, M.E. & Walters, P.A. 1985 Proceedings of the International Symposium on Controlled Release of Bioactive Materials 12, 145.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mahkam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahkam, M., Mohammadi, R., Assadi, M.G. et al. Synthesis and characterization of new cross-linked terpolymer systems containing silyl group. Silicon Chem 3, 51–58 (2006). https://doi.org/10.1007/s11201-005-9001-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11201-005-9001-4

Key words

Navigation