Skip to main content
Log in

Solvent effects on the kinetics of gelation and the crosslink density of polysiloxane gels

  • Published:
Silicon Chemistry

Abstract

A wide range of hydrocarbons were rapidly gelled by adding a polysiloxane copolymer in the presence of divinylbenzene and a platinum catalyst. The gel point was measured over a range of concentrations for hydrocarbons/solvents and organogels, using three separate methods: rheology, visual (tilt-tube) and FTIR. As the fraction of solvent was increased, the rate of reaction decreased, leading to an increase in the gelation time. The absolute value of the gel point depends upon the techniques used to measure it. For any particular system the gel point values always followed the order: rheology > visual > FTIR. The crosslink densities of the gel systems were determined using both swelling and thermomechanical analysis. The swelling measurements confirmed that the addition of large quantities of solvent markedly reduced the crosslink density of the obtained chemical gel networks, which helped in designing gels with suitable critical strength for effective field work. Also the effectiveness of gelation with the proposed gelling system for different hydrocarbons/solvents was evaluated, and discussed in relation to their dielectric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FTIR:

Fourier transform infra red

GP:

gel point time

DVB:

divinylbenzene

THF:

tetrahydrofuran

TMA:

thermomechanical analysis

NMR:

nuclear magnetic resonance

GPC:

gel permeation chromatography

References

  1. Western Company for the Water Quality Office Environmental Protection Agency, USA, Gelling Crude Oils to Reduce Marine Pollution from Tanker Oil Spills, Project No. 1508 0 DJN, 1971, pp. 1–137.

  2. Beerbower, A., Nixon, J. & Wallace, T.J. 1968 J. Aircraft 5(4), 367.

    CAS  Google Scholar 

  3. Moghadam, P.E. 1968 Bull. Iranian Petroleum Institute 33, 112.

    Google Scholar 

  4. Kjonoksen, A. & Nystrom, B. 1996 Macromolecules 29, 5215.

    Google Scholar 

  5. Hild, G. 1998 Prog. Polym. Sci. 23(6), 1019.

    CAS  Google Scholar 

  6. Lin, Y., Kachar, B. & Weiss, R.G. 1989 J. Am. Chem. Soc. 111, 5542.

    CAS  Google Scholar 

  7. Zuo, J., Liang, D., Ran, S., Chen, T. Niu, A. & He, B. 1998 J. Appl. Polym. Sci. 68, 363.

    CAS  Google Scholar 

  8. Tobita, H. & Zhu, S. 1997 Polymer 38(21), 5431.

    CAS  Google Scholar 

  9. O’Driscoll, K.F., Kinetics of bimolecular termination, in Comprehensive Polymer Science, Vol. 3, G. Allen (ed.) Pergamon Press, New York, 1989 p. 161.

    Google Scholar 

  10. Feger, C., Molis, S.E., Hsu, S.L. & MacKnight, W.J. 1984 Macromolecules 17, 1830.

    CAS  Google Scholar 

  11. Terech, P. 1986 Polym. Prepr. (Am. Chem. Soc.) 27(1), 225.

    CAS  Google Scholar 

  12. Lin, R.-H. & Hsu, J.-H. 2001 Polym. Int. 50, 1073.

    CAS  Google Scholar 

  13. Yang, D.B. 1993 J Polym Sci. Part A: Polym Chem. 31(1), 199.

    CAS  Google Scholar 

  14. Radosta, S., Schierbaum, F. & Yuriev, W.P. 1989 Starch/Staerke 41, 428.

    CAS  Google Scholar 

  15. Malek, J. 1999 J. Thermal Anal. 56(2), 763.

    Article  CAS  Google Scholar 

  16. Yang, S. & Navrotsky, A. 2002 Microporous Mesop. Mater. 52(2), 93.

    CAS  Google Scholar 

  17. Dollimore, D., Evans, T.A., Lee, Y.F. & Wilburn, F.W. 1992 Thermochim. Acta 198, 249.

    CAS  Google Scholar 

  18. Blaine, R.L. & Hahn, B.K. 1998 J. Therm. Anal. Calor. 54, 695.

    CAS  Google Scholar 

  19. Tanaka, A., Kago, K., Nagata, H. & Nitta, K. 2001 Polymer 42(1), 137.

    CAS  Google Scholar 

  20. Yildiz, S., Hepuzer, Y., Yagci, Y. & Pekcan, O. 2002 Eur. Polym. J. 38, 1591.

    CAS  Google Scholar 

  21. Brown, R. 1999 Handbook of Polymer Testing. New York: Marcel Dekker.

    Google Scholar 

  22. Alili, L., Van Turnhout, J. & te Nijenhuis, K. 1998 Wiley Polym. Networks Group Rev. Ser. 1 (Chemical and Physical Networks), p. 255.

  23. Rodd, A.B., Cooper-White, J., Dunstan, D.E. & Boger, D.V. 2001 Polymer 42, 185.

    CAS  Google Scholar 

  24. Eloundou, J.P., Feve, M., Gerard, J.F., Harran, D. & Pascault, J.P. 1996 Macromolecules 29, 6907.

    CAS  Google Scholar 

  25. te Nijenhuis, K. 1997 Thermoreversible Networks, {Adv. Polym. Sci}. 130. Berlin: Springer-Verlag.

    Google Scholar 

  26. Macosko, C. W. 1994 Rheology Principles, Measurements and Applications. New York: Wiley-VCH.

    Google Scholar 

  27. Guenet J. M. 1992 Thermoreversible Gelation of Polymers and Biopolymers. London: Academic Press.

    Google Scholar 

  28. Winter, H.H. & Chambon, F. 1986 J. Rheol. 30(2), 367.

    CAS  Google Scholar 

  29. Cassagnau, P.H., in Handbook of Advanced Materials Testing, Cheremisinoff, N.P., Cheremisinoff, P.N. (eds.), New York: Marcel Decker, 1995, p. 925.

    Google Scholar 

  30. Chiou, B., English, R. J. & Khan, S. A. 1996 Macromolecules 29, 5368.

    CAS  Google Scholar 

  31. Szuromi, E., Berka, M. & Borbely, J. 2000 Macromolecules 33, 3993.

    CAS  Google Scholar 

  32. Tobita, H. 2001 Theory of gelation. In Gels Handbook, eds. Osada, Y., Kajiwara, K., San Diego, California: Academic Press, p. 29.

    Google Scholar 

  33. Armarego, W.L. & Perrin, D.D. 1988 Purification of Laboratory Chemicals, 3rd edn. Oxford: Pergamon.

    Google Scholar 

  34. Lenz, R.W. 1967 Organic Chemistry of Synthetic High Polymers. New York: Interscience Publishers.

    Google Scholar 

  35. Britcher, L.G., Kehoe, D.C., Matisons, J.G. & Swincer, A.G. 1995 Macromolecules 28, 3110.

    CAS  Google Scholar 

  36. Lestel, L., Cheradame, H. & Boileau, S. 1990 Polymer 31, 1154.

    CAS  Google Scholar 

  37. G. Markovic, M., Choudhury, N.R., Dimopoulos, M., Matisons, J.G. & Williams, D.R.G. 1999 Kautschuk Gummi Kunsts. 52, 170.

    CAS  Google Scholar 

  38. Flory, P.J. & Rehner, J. Jr. 1943 J. Chem. Phys. 11, 455.

    Google Scholar 

  39. Kuo, A.C.M. 1999 Poly(dimethylsiloxane), in Polymer Data Handbook, Mark, J.E. (ed.), New York: Oxford University Press, p. 411.

    Google Scholar 

  40. Wunderlich, B. The basis of thermal analysis, in Thermal Characterization of Polymeric Materials, Turi, E.A., (ed.) San Diego, California: Academic Press, 1997

    Google Scholar 

  41. Garcia, R. & Pizzi, A. 1998 J. Appl. Polym. Sci. 70, 1111.

    CAS  Google Scholar 

  42. Dvornic, P.R. & Lenz, R.W. 1990 High Temperature Siloxane Elastomers. Basel: Huthig & Wepf.

    Google Scholar 

  43. Rohn, C.L. 1995 Analytical Polymer Rheology. Munich: Carl Hanser.

    Google Scholar 

  44. Valles, E.M. & Macosko, C.W. 1979 Macromolecules 12, 521.

    CAS  Google Scholar 

  45. Tung, C.Y.M. & Dynes, P.J. 1982 J. Appl. Polym. Sci. 27, 569.

    CAS  Google Scholar 

  46. Chiou, B. & Khan, S.A. 1997 Macromolecules 30, 7322.

    CAS  Google Scholar 

  47. Rogovina, L.Z., Vasiliev, V. & Slonimisky, G. 1992 Prog. Colloid Polym. Sci. 90, 151.

    CAS  Google Scholar 

  48. Bansil, R., Hermann, H.J. & Stauffer, D. 1984 Macromolecules 17, 998.

    CAS  Google Scholar 

  49. Markovic, N., Dutta, N.K., Williams, D.R.G. & Matisons, J. in Polymer Gels: Fundamentals and Applications, Bohidar, H.B., Dubin, P., Osada, Y., (eds.), ACS Symposium Series 833, Washington, DC: ACS. 2002, pp. 190–204.

    Google Scholar 

  50. Wohlfarth, C., 1981 Permittivity (dielectric constants) of liquids, in CRC Handbook of Chemistry and Physics, 61st edn., Weast, R.C., (ed.), Boca Raton, FL: CRC Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janis Matisons.

Additional information

This paper is dedicated to Mike Owen on occasion of his winning the DeBruyn medal, the first silicon chemist to do so.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markovic, N., Dutta, N.K., Williams, D.R.G. et al. Solvent effects on the kinetics of gelation and the crosslink density of polysiloxane gels. Silicon Chem 2, 223–233 (2005). https://doi.org/10.1007/s11201-005-4579-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11201-005-4579-0

Keywords

Navigation